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Summary

An analytical, parametric study of the attenuation of bending boundary layers or edge effects in

balanced and unbalanced, symmetrically and unsymmetrically laminated thin cylindrical shells is pre-

sented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell

equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are

included. Two nondimensional parameters are identified that characterize and quantify the effects of

laminate orthotropy and laminate anisotropy on the bending boundary-layer decay length in a very

general and encompassing manner.

A substantial number of structural design technology results are presented for a wide range of

laminated-composite cylinders. For all laminate constructions considered, the results show that the

differences between results that were obtained with the Sanders-Koiter shell equations, the Love-

Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect

of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the

size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders

considered. Moreover, the results show that coupling between the various types of shell anisotropies has

a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The

results also show that, in some cases, neglecting the shell anisotropy results in underestimating the

bending boundary-layer decay length and, in other cases, results in an overestimation. An example

problem is included in an appendix that demonstrates how to perform the calculations that were used to

generate the results of the present study.

Symbols

a12 , a22 , a26 , b21 inverted stiffness expressions defined in appendix C

a12, a22, a26, b21 modified inverted stiffness expressions defined in appendix B

,4,4 nondimensional anisotropy parameters

All, A12, A16,

A22, A26, A66

laminate membrane stiffnesses

m m m

A16, A26, A66 modified laminate stiffnesses defined in appendix B

Bll, B12, B16,

B22, B26, B66

laminate membrane-bending coupling stiffnesses

m m

B16, B26 modified laminate stiffnesses defined in appendix B

C1 first-order correction factor for anisotropy parameter

d, d ° attenuation or decay lengths for which anisotropy is included and neglected,

respectively

Dll, D12, D16,

D22, D26, D66

laminate bending stiffnesses

e, eo stiffness coefficients defined in appendixes C and B, respectively
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Introduction

major and minor principal lamina moduli, respectively

lamina shear modulus

cylinder wall thickness and length, respectively

axial and circumferential bending and twisting stress resultants, respectively

axial, circumferential, and shear membrane stress resultants, respectively

nondimensional orthotropy parameter

loading function appearing in bending boundary-layer differential equation

constant coefficients of bending boundary-layer differential equation

axial and circumferential transverse-shear stress resultants, respectively

cylinder radius

modified shear stress resultant defined in appendix B

strain-energy density

radial-displacement component

axial coordinate of cylinder

attenuation-length tolerance parameter

axial, circumferential, and shear membrane strains, respectively

circumferential, angular coordinate

axial and circumferential bending and twisting strains, respectively

constant defining different shell theories

lamina major Poisson's ratio

lamina fiber angle (see fig. 4)

The term, "bending boundary layer," refers to localized zones of bending stresses and deformations

that appear in practically every type of thin-shell structure (ref. 1). Bending boundary layers are caused

by edge support conditions; by localized mechanical loads, heating, or cooling; and by abrupt changes

in stiffness, such as those caused by a cutout, a crack, or a stiffener. All these effects may be real con-

cerns in a given preliminary design for an advanced aerospace vehicle made of laminated-composite

materials. Thus, it is useful to have nondimensional parameters that characterize the effects of shell



geometryandlaminateorthotropyandanisotropyontheextentof bendingboundarylayersthatcanbe
usedto helpguidethedevelopmentof a design.Forexample,anoptimaldesignfor apressurevessel
mightbeonethatexploitsthemembraneload-carryingactionof ashellandminimizeszonesof local
bendingstresses.Meaningfulnondimensionalparameterscouldbeusedatthepreliminarydesignstage
to identifyfamiliesof laminatesandmaterialsystemsthatexhibitrelativelysmallbendingboundary
layers.Moreover,ameaningfulestimateof thesizeofabendingboundarylayerinashellisveryuseful
for determininganadequatefirst-approximationfinite-elementmodelfor a complexshellstructure.
Withoutaproperunderstandingof theextentofabendingboundarylayer,it ispossibletohaveafinite-
elementmodelthatcouldmissasignificantpartof thestructuralresponseinaregionwherefailuresare
ofteninitiatedbyhighinterlaminarstresses.Furthermore,aprioriknowledgeof theextentof bending
boundarylayersisusefulindeterminingtheinstrumentationlocationsinstructuralverificationtestsand
in materialcharacterizationtests(ref.2).In addition,knowledgeof howlaminateconstructionaffects
theextentof abendingboundarylayerisusefulforunderstandinghownonlinearprebucklingdeforma-
tionsaffectthebucklingbehaviorof cylindricalshells.

Studiesofthebehaviorof axisymmetric,bendingboundarylayersin fight-circular,cylindricalshell
structuresmadeof orthotropicoranisotropicmaterialsandwithfinitelengthhavebeenpresented,toat
leastsomeextent,in references1through13.Inthediscussionthatfollows,referenceismadetounbal-
ancedandbalancedlaminatesthatareeithersymmetricallyorunsymmetricallylaminated.Herein,the
termunbalancedlaminateis usedto indicatethatcouplingbetweenpureextensionorcontractionand
shearingispresentin a laminate.Thetermunsymmetriclaminateisusedto indicatecouplingbetween
anyof thecomponentsof bendingactionwith anyof thecomponentsof membraneaction.A fully
anisotropiclaminatewouldincludeboththesetypesof anisotropy,in additionto theanisotropythatis
manifestedby couplingbetweenpurebendingandtwistingactionthat is sometimesexhibitedby
balanced,symmetriclaminates.

In reference1,ananalysisispresented,andanexpressionfortheattenuationordecaylengthof the
bendingboundarylayerfor a speciallyorthotropiccylinderthatis subjectedto edgeloads,internal
pressure,andheatingis given.Theseequations,andtheaccompanyingresults,arebasedonthelinear
Love-Kirchhoffshellequations.Inreference3,ananalyticalsolutionthatisbasedonDonnell'ssimpli-
ficationsto thelinearLove-Kirchhoffshellequationsis givenfor fully anisotropiccylindersthatare
subjectedto lateralpressureandedgeloads.Resultsthatshowtheeffectof laminateanisotropyonthe
edgemomentarepresentedfor a clampedtwo-ply shellthat is subjectedto internalpressure.In
addition,adiscussionispresentedthatsuggeststhatsolutionsbasedonDonnell'sequationsshouldbe
accurateforlaminatesthatarenothighlyanisotropic.Ananalyticalstudyofbendingboundarylayersin
unbalanced,symmetricallylaminatedcylinders,which is also basedon Donnell'sequations,is
presentedin reference2.Theaimof thisstudywasto determineasuitablegagesectionina laminated-
compositetube that is to be usedfor a materialcharacterizationtest.Resultsarepresentedfor
unidirectional,helical-woundtubes.

An analyticalsolutionfor bendingboundarylayersin unbalanced,symmetricallylaminatedand
balanced,unsymmetricallylaminatedcircularcylindricalshellsthataresubjectedto internalpressure
andthermalloadsispresentedin reference4. ThesolutionisalsobasedonDonnell'slinearequations,
andnumericalresultsarepresentedfor filament-woundcylindersmadeof heat-treatedcarbon-carbon
material.A studythatfocusesmainlyonprebucklingdeformations,withbendingboundarylayers,in
homogeneous,orthotropicandunsymmetricallylaminatedcross-plycylindersthat aresubjectedto
axial-compressionloadsandlateralpressureloadsispresentedin reference5.Theeffectsof thebend-
ingboundarylayersonthebucklingresponseareexaminedfor severallaminateconstructions,butthe
generaleffectsof thelaminateconstructionontheextentof theboundarylayersarenotdiscussed.



A pair of complexconjugate,fourth-orderequationsthatarebasedon Flugge'scorresponding
equations(ref.14),whichcanbesolvedin closedform,arederivedfor speciallyorthotropic,circular
cylindricalshellsin reference6.Moreover,eigenfunctionsolutionsarepresentedthatincludethesolu-
tionfor theaxisymmetricbendingboundarylayer;severalsimplifiedequationsarepresentedandtheir
relativeaccuracyisanalyzed.In reference7,astudyofbendingboundarylayersin transverselyisotro-
piccircularcylindricalshellsispresented.Thisstudyexaminestheattenuationcharacteristicsof bend-
ing boundarylayersby applyinganasymptoticmethodto the linear,three-dimensionalelasticity
equationsandpresentsorder-of-magnitudeestimatesforthestressesanddisplacementsfor awiderange
of ratiosof thetwoprincipalelasticmoduli.In reference8,ananalyticalsolutionfor anunbalanced,
unsymmetricallylaminatedcircularcylindricalshellthatis subjectedto internalpressureis presented
thatisbasedonavariantoftheLove-Kirchhoffshelltheory,whichusesanexpressionforthechangein
surfacetwistthatwasgivenbyTimoshenko.Numericalresultsthatdemonstratethecouplingeffectsof
theshellanisotropiesarealsopresentedforatwo-plyshell.

Thebendingboundarylayersof anunbalanced,unsymmetricallylaminatedcircularcylindrical
shellthatis subjectedto axialcompression,torsion,or thermalloadingareinvestigatedin reference9.
Resuksarealsopresentedthatdemonstratethecouplingeffectsof theshellanisotropies.In addition,
resultsarepresentedfor two moreconventionalunsymmetriclaminatesanda typicalquasi-isotropic
laminate.In references10 and 11, bendingboundarylayersare also examinedfor balanced,
symmetricallylaminatedandbalanced,unsymmetricallylaminatedcylindricalshells,in thecontextof
nonlinearprebucklingdeformationsthat occurasa resultof compressionand thermalloads.In
particular,the effectsof laminatestackingsequenceon the extentandcharacterof the bending
boundarylayersarepresentedfor two groupsof threesimilarlaminates.Twoof the laminatesare
unsymmetric.Inreference12,alinearanalysisispresentedthatfocusesmainlyonbalanced,symmetri-
callylaminatedcylinders,andanexpressionisgivenforthelengthofthebendingboundarylayersnear
thecylinderendsthatisbasedontheLove-Kirchhoffshellequations.

Mostrecently,Goldenveizer'sstatic-geometricdualityprinciple(ref. 15)hasbeenusedin refer-
ence13to reducetheSanders-Koiterequations(refs.16and17)for fully anisotropic,fight-circular
cylindricalshellstotwocoupled,fourth-orderequationsthatuseastressandacurvaturefunctionasthe
unknown,primaryfieldvariables.Thereductionisdonebyaddingcertainnegligiblysmalltermstothe
stress-strainrelations,whichareintrinsicallyinerrorbecausetheymustbeestablishedexperimentally.
Theapproachdemonstrateshowthestatic-geometricdualityprinciplecanbeusedtoreducegreatlythe
amountof algebraneededto obtainresults.Eigenfunctionsolutionsarealsopresentedfor specially
orthotropiccylindersthatarein agreementwithcorrespondingresultspresentedin reference6. More-
over,asymptoticformulasthatcanbeusedtodetermineaxisymmetricbendingboundary-layerattenua-
tionlengthsandthedecayof otherunsymmetric,self-equilibratededgeloadsaregiven.

With theexceptionof reference13,explicitexpressionsfor estimatingthesizeof axisymmetric
bendingboundarylayersin fully anisotropic,right-circularcylindersarenot foundin the literature.
Moreover,thereappearto beevenfewerresultsforlaminated-compositeshellsmadeof contemporary
materialsystemsandessentiallynosubstantialparametricstudies.Thepresentpaperfocusesondevel-
opingmeaningfulestimatesof attenuationlengthsof bendingboundarylayersin balancedand
unbalanced,symmetricallyandunsymmetricallylaminatedcircularcylinders.Theanalysisisbasedon
thelinearSanders-KoitershellequationsandcontainstheLove-Kirchhoffshellequations(ref.1)and
Donnell'sequations(ref. 1) asspecialcases,andis somewhatsimilarto theanalysespresentedby
Reuter(ref.4) andChaudhuri,Balaraman,andKunukkasseril(ref. 8).With theseequations,explicit
expressionsareobtainedandnondimensionalparametersarepresentedthatcharacterizetheeffectsof
cylindergeometryandlaminateconstructiononthesizeof abendingboundarylayerinaverygeneral
manner.In particular,genericdesigncurvesarepresentedthatusethenondimensionalparametersto



showthe effectsof laminateorthotropyandanisotropyon theattenuationlengthin a conciseand
encompassingmanner.In addition,valuesof theseparametersarepresentedfor a verywiderangeof
orthotropicandanisotropiclaminateconstructions.Also,differencesin theresultsthatwereobtainedin
thepresentstudybyusingtheSanders-Koitershellequations,theLove-Kirchhoffshellequations,and
Donnell'sequationsarediscussed.Key detailsof the analysispresentedareelaborateduponin
appendixesA-C. An exampleproblemis includedinappendixDthatdemonstrateshowtoperformthe
calculationsthatwereusedto generatetheresultsof thepresentstudy.

Analysis

The ordinary differential equation that governs the axisymmetric bending behavior of a right-

circular cylinder that is subjected to edge loads or displacements and surface tractions is obtained by

first specializing the linear Sanders-Koiter shell equations that are given in appendix A for axial sym-

metry. For the equations presented herein, x and 0 denote the axial and circumferential coordinates of

a right-circular cylinder, respectively, and the specialization to axial symmetry is obtained by eliminat-

ing all terms in the equations that are differentiated with respect to the circumferential coordinate 0. The

resulting set of equations for axisymmetric behavior is given in appendix B. The ordinary differential

equation that governs the axisymmetric bending behavior of a right-circular cylinder that is subjected to

edge loads or displacements and surface tractions is derived in appendix B and is given by

d4w +4S d2w +4Qw =P(x)
dx 4 dx 2

(1)

where S, Q, and P(x) are defined in appendix B by equations (B55), (B56), and (B57), respectively,

and w(x) is the radial deflection that is positive valued when outward. The coefficients of equation (1)

depend on the subscripted A, B, and D constitutive terms of classical Love-Kirchhoff-type laminated

shell theory (e.g., see ref. 18, pp. 190-202) and the radius of the cylinder middle surface R.

To determine the specific form of the solution to equation (1), it is useful to examine the positive-

definiteness conditions on the strain-energy density function. The strain-energy density function for this

problem is given by

2U= Nx e° + N0e _ + Nx0_x0 + Mx K° + Mx0K°0 (2)

where Nx, NO, and Nx0 are the membrane stress resultants, Mx and Mx0 are the bending stress
O O O

resultants, ex, e_, and _x0 are the middle-surface membrane strains, and Kx and Kx0 are the middle-

surface bending strains. By using equations (B22), (B23), and (B28), the strain-energy density function

is expressed as

2U= Nxex° + Noe _ + TTx°O+ Mx K° (3)



The strain-energy density is expressed in terms of the strains and constitutive terms by using the consti-

tutive equation given by equation (B29); that is,

All A12 216 Bll

A12 A22 226 B 12

216 226 266 B16

Bll B12 B16 Dll

(4)

The stiffness terms in equation (4) that have overbars are defined by equations (B31)-(B35) and are
h

functions of the shell wall thickness-to-radius parameter, _. By enforcing positive definiteness of the

strain-energy density function (e.g., see ref. 19), the requirement that the diagonal terms All , A22 ,

A66 , and D 11 be positive valued is obtained. Moreover, the following determinants are positive valued:

All A12

A12 A22
= A 11A22 - A22 > 0 (5)

B

All A12 A16

A12 A22 A26

A16 A26 A66

= (AllA22-A22)A66-Al1226-A22226 + 2A12A16A26 >0 (6)

Likewise, positive definiteness of the strain-energy density function also requires that the determinant

of the constitutive matrix in equation (4) be positive valued. Moreover, by rearranging the strain-energy

density function into the form

T
All

A16

A12

Bll

216 A12 Bll

266 226 B 16

226 A22 B 12

B16 B12 Dll
/ (7)

the following additional positive-definiteness condition is obtained:

All A16 - 226>0_ _ =A11A66-
A16 A66

(8)



The homogeneous solution for equation (1) involves the square root of the quantity Q- 52 . By

using equations (B55) and (B56), this quantity is given by

Q_ S 2 _ 4C1C3 - C 2

16C12
(9)

Substituting equations (B41)-(B43) into equation (9) and simplifying, the quantity Q- S 2 is found to

be given by

Q_S2=_

4c 2

All A12 216 Bll

A12 A22 226 B12

216 226 266 B16

Bll B12 B16 Dll

(10)

It follows logically that Q- S 2 > 0 because the positive-definiteness of the strain-energy density func-

tion requires that the determinant in equation (10) be positive valued. Moreover, Q-S 2 >0 implies

C3
that Q > 0, and Q > 0 implies that >0. Equations (6), (8), and (B43) indicate that C 3 >0. Thus,
C 3 C1

C1 >0 yields the condition that C 1 =Dll_>0 (see eqs. (B49) and (B50)). Because Dll >0; _> 0.

Because Q is always positive, it is convenient to introduce the expression

1
T 2 =Q=

4R2_22D11 e
(11)

such that T 2 - S 2 >0, and to express equation (1) as

d4w + 4S d2w + 4T2w = P(x)
dx 4 dx 2

(12)

Equation (12) is a linear, fourth-order, nonhomogeneous ordinary differential equation with con-

stant coefficients. The characteristic equation of equation (12) is given by

)v4 +4S )v2 +4T 2 =0 (13)

By using the knowledge that T 2 - S 2 > 0, the roots of the characteristic equation are obtained from the

quadratic formula; that is,

(14)



where i=x/-1. Solution of this equation for )_ yields four roots of equation (13) that are pairs of

complex conjugates given by

(15)

The homogeneous solution of equation (12) can be written as follows:

WH(X)=Kle T'fT_xsin(x/T+S x +K2)+ K3e T_fT_(L X)sin(_/T+S x +K4) (16a)

where x _ [0,L]. The symbols K1, K2, K3, and K 4 are real-valued constants that are determined from

the boundary conditions given by equations (B 18) and (B 19). The solution given by equation (16a) rep-

resents a damped, oscillatory response that decays from each end of the cylinder. The regions near the

edges of the cylinder, where the amplitude of Wn(X) is the largest, are called the bending boundary lay-

ers. All response quantities that exhibit bending boundary layers involve derivatives of equation (16a)

and can be expressed in the general form

F(x)=Fle W_W4Xsin(x/T+S x +F2)+F3e WX/W_CLX)sin(_fT+S x +F4) (16b)

where F 1 through F 4 are constants.

When the length of the bending boundary layers is less than half the cylinder length, which is typi-

cal, equations (16) can be partitioned into one part that applies to the edge x = 0 and the other that

applies to the edge x = L. The response quantities for the region near x = 0 are obtained by setting

F3 = 0 in equation (16b). Similarly, the response quantities for the region near x = L are obtained by

setting F 1 = 0 in equation (16b).

Formulas for Attenuation Length

Formulas for the attenuation or decay length of the bending boundary layers are obtained by first

noting that the response quantities for the region near x = 0 are bounded by the two functions

+Fie T_/T4x and that the response quantities for the region near x = L are bounded by the two func-

tions + F3e T_/T4 (L x). Let d denote the length for which the solution attenuates or decays to a value of

e times the amplitude F 1 or F 3. A reasonable estimate of the attenuation length or decay length d is

obtained by replacing x and (L - x) with d in the exponential terms of equation (16b) and by noting

that the amplitude of F(x) is attenuated by the exponential terms. Thus, the attenuation length or decay

length is given by e _ d = E, which yields

d =- In e(T - S) 1/2 <L (17)



By using equations (B55) and (11), equation (17) is expressed as

d d °
m A (18)

where d ° is the attenuation length, in which anisotropy is neglected (A= 1), that is, given in nondimen-

sional form by

d ° In e
0 (19)

The symbol h is the shell wall thickness, and 0 and A are nondimensional orthotropy and anisotropy

parameters or factors, respectively, that are given by

0_

12A11D11

(A11A22- A22)h 2

1/4

(20a)

/All.A1,(
A=. All a.22 _ 1 4_.22Dll _ (20b)

where the symbols in these equations are defined in appendix B.

Other useful forms of equation (20a) are obtained by introducing an effective membrane Poisson's

A12
ratio v m- , which is the geometric mean of the two Poisson effects associated with the

A11A22

inplane principal direction of a homogenized orthotropic material. By using this effective membrane

Poisson's ratio, equation (20a) is expressed as

0_

12Dll

A22h2(1 - v21)

1/4

(21)

For a single layer of homogeneous, specially orthotropic material, v m = _, A = 1, and

E1 ]1/4

0 = [E2(1 -v12v21) ]
(22)



which, when substituted into equation (19), yields results identical to the results presented by Kraus

(ref. 1), where the decay tolerance is given by e = e-_. Likewise, for a single layer of isotropic material

with an arbitrary thickness, Vm=V , A= 1, and

(23)

For values of 0.2 < v < 0.33, 0 varies by less than 2 percent. A 90-percent-decay length (e = 0.1) that is

a good approximation to the behavior of homogeneous, metallic shells is given by R = 1.79 .

Applying this formula, for example, to the Space Shuttle solid rocket booster described in references 20

and 21 (R = 72 in., h = 0.5 in.) gives d ° = 0.15R = 10.8 in.

It is interesting to note that the differences between the attenuation lengths that are based on the

Sanders-Koiter, the Love-Kirchhoff, and Donnell's equations appear in the coefficient e and in the

symbols with overbars in equation (20b) for the anisotropy factor A (see eqs. (B22), (B31)-(B35), and
3

(B45)-(B49)). For these equations, the Sanders-Koiter theory is given by bt=_ and the Love-

Kirchhoff theory is given by bt= 1. Donnell's equations are given by bt= 0. For isotropic and specially

orthotropic cylinders, A = 1 and the three sets of shell equations yield identical results• Similarly, for

antisymmetric cross-ply cylinders (A16 = A26 = D16 = D26 = B16 = B26 = B12 = B66 = 0)

1 - A12B 11

A = 1 AllDll _/(AllA22_A22)(AllDll_B21)

and the three shell theories yield identical results.

(24)

Simplified Formulas for A

For balanced, symmetrically laminated cylinders, the only anisotropic constitutive terms are D16
• • • 4/

and D26, and the anlsotropy factor is given by A = _/e where

e=l
bt2D26

A66Dll h2 1 + g2 D66

A66h2

(25)

10



h < 1 . This
For thin-shell theories, such as the Sanders-Koiter theory and the Love-Kirchhoff theory, R - 20

result suggests that a useful approximation to equation (25) and the anisotropy factor can be obtained

from a power series expansion for small values of h. This process yields
R

A =l-7_R] A66Dll h2
(26)

3 D26
In this expression, 0 < g < _ and 0 < < 1. Thus, the approximate formula for A indicates

A66D11 h2

that for most practical applications of thin-shell theory, the differences between the three different shell

theories considered herein and the effect of the flexural anisotropy of a general symmetrically laminated

cylinder are negligible.

A simplified formula for the anisotropy factor can be derived for the general expression for A that
h

is given by equation (20b). For this case, the following power series expansions for small values of
R

are used:

(27)

(h)a12=a12+a112 R +a212 +... (28)

(h)a22 =a22 +a122 +a222 +... (29)

(h)a26 = a26 -I-a126 +a226 +... (30)

b(h) (h)2b21 =b21+ 121 R +b221 R +"" (31)

Substituting equations (27)-(31) into equation (20b) and expanding the resulting expression in a similar

manner yields

(h)(h)2A=A 0+A 1 R +A 2 R +"" (32)

11



The coefficient A 2 is a very complicated expression, and as a result, the following first-order approxi-
mation of A is used herein; that is,

(33)

where A 0 is the value of equation (20b) with g = 0, which is the anisotropy factor that corresponds to

the use of Donnell's equations. The expression for A 0 is given by

AliA22- A22 ) 1/4(Ao= _ All a22e 0 1 b21 ) 1/2
_/a22D 11 _0

(34)

In this expression, a22 and b21 are obtained from equations (B45)-(B48) by setting g= 0 in equa-

tions (B31)-(B35). The expression for e0 is obtained from equation (B49) in a similar manner. The
term C1 in equation (33) represents a first-order correction to the results that correspond to Dolmell's
equations and is given by

 /a  O11 0 + a+1 1 0b 1 1)
C 1 = (35)

4a22_0 (_/a22Dl 1_0-b21)

where the terms that appear in equation (35) are given in appendix C. In addition, further simplifications

to A 0 and C1 are also presented in appendix C for unbalanced and balanced symmetric laminates and

for balanced, unsymmetric laminates that include the subclasses of general antisymmetric laminates,

antisymmetric cross-ply laminates, and antisymmetric angle-ply laminates. The relative size of C1 and

its contribution to equation (33) are examined parametrically in the subsequent section of the present

study.

Results and Discussion

Equations (18) and (19) form the basis for the parametric study presented herein. In particular,

the two equations isolate the contributions of shell orthotropy and shell anisotropy to the bending
boundary-layer decay length with nondimensional parameters and imply the generic design-chart repre-

sentations that are illustrated in figures 1 and 2. In figure 1, generic results are presented that show the

d e 0.1nondimensional, 90-percent-decay length given by _ , as a function of the orthotropy param-

eter 0, for selected values of the anisotropy parameter A. A 90-percent-decay length was selected herein

to yield an accuracy that is approximately to within the accuracy of the experimentally determined

material properties, but other values could be used.

In a manner similar to figure 1, figure 2 shows the nondimensional, 90-percent-decay length, as a

function of the anisotropy parameter A, for selected values of the orthotropy parameter 0. Results that

correspond to balanced, symmetrically laminated cylinders are given by a value of A = 1, and results
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thatcorrespondto anisotropicshellwallareindicatedin thefiguresbythefilledcirclewithanordinate
valueof 1.79.Overall,thesetwofiguresrepresentresultsthatareapplicableto avastrangeof laminate
constructionsandprovideacommonbasisfor comparisonofregularandhybridlaminatesmadeof dif-
ferentmaterialsystemsandlaminatestackingsequences.In general,thefiguresshowincreasesin the
nondimensional90-percent-decaylength,with increasesin eithertheorthotropyparameter0 or the

anisotropy parameter A. In addition, the results in figures 1 and 2 clearly indicate the effect of neglect-

ing shell-wall anisotropy on the attenuation of a bending boundary layer.

The actual value of the nondimensional, 90-percent-decay length depends on the particular values

of the orthotropy and anisotropy parameters of a given laminate. Thus, additional results are presented

subsequently that show how the orthotropy parameter 0 and the anisotropy parameter A vary with

laminate construction. In particular, values of 0 and A are presented first for balanced and unbalanced

symmetrically laminated cylinders. Then, values are presented for balanced and unbalanced unsymmet-

rically laminated cylinders. Nine different contemporary material systems were used to generate

these results. These material systems include boron-aluminum, S-glass-epoxy, a typical boron-epoxy,

AS4/3501-6 graphite-epoxy, AS4/3502 graphite-epoxy, IM7/5260 graphite-bismaleimide, Kevlar

49-epoxy, IM7/PETI-5 graphite-epoxy, and P-100/3502 pitch-epoxy materials. The mechanical

properties of these material systems are presented in table 1; the nominal ply thickness that was used is

0.005 in. An example problem in appendix D demonstrates how to perform the calculations that were

used to generate the results that are presented subsequently.

Balanced, Symmetrically Laminated Cylinders

Symmetrically laminated shell walls are characterized mathematically by values of zero for the sub-

scripted B terms that appear in the constitutive equation (A15). In addition, balanced, symmetrically

laminated shell walls do not exhibit coupling between extension and shear, which is characterized by

A16 = A26 = 0 in equation (A15). Shell walls of this class are strictly specially orthotropic for many

laminates. However, for some wall constructions, balanced, symmetric laminates exhibit anisotropy in

the form of coupling between pure bending and twisting of the shell wall. This type of anisotropy is

manifested by nonzero values of the D16 and D26 constitutive terms in equation (A15). However, the

discussion of equation (26) that has been given herein indicates that this type of anisotropy is negligible

for thin shells and that the differences between results obtained from the Sanders-Koiter, the

Love-Kirchhoff, and the Donnell theories are insignificant. Moreover, A = 1 for this class of laminated-

composite shell walls, and the attenuation behavior is governed by the nondimensional orthotropy

parameter 0 that is given by equation (20a). Furthermore, equations (18) and (19) indicate that the
attenuation length is a constant multiple of the orthotropy parameter that depends on the attenuation-

tolerance parameter e. For this case, trends that are exhibited by 0 are identical to those exhibited by the

attenuation length based on any value of e.

Values of the orthotropy parameter 0 are presented in figure 3 and table 2 for single-ply, homoge-

neous, specially orthotropic and isotropic shell walls, with arbitrary thickness, as a function of the

ratio of the principal elastic moduli, E2/E 1. For these results, the orthotropy parameter is given by

equation (22) and is expressed in the following, more convenient form:

( -,1 1/4
E2 E2V2 _[

0 = E1 1-El 12J] (36)
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Onecurve(shownin fig. 3),whichisessentiallyseveralcoincidentcurves,correspondsto general
resultsfor 0.2 _<v12 -<0.35. In addition, specific results for the nine material systems considered herein

and for a typical aluminum and a steel are indicated by the square symbols in the figure. The results in

figure 3 indicate that the effects of variations in the major Poisson's ratio on the orthotropy parameter 0

are small compared to the effect of variations in the ratio of the principal elastic moduli. Moreover, the

results show that 0 decreases rapidly as the ratio of the principal elastic moduli increases, particularly

for values of E2/E 1 less than approximately 0.1, which corresponds to most of the contemporary ortho-

tropic materials considered herein. Figure 3 also shows that an isotropic material corresponds to 0 _ 1.

Values of the orthotropy parameter 0 for the single-ply, homogeneous, specially orthotropic cylin-

ders investigated by Cheng and He (ref. 6) were also obtained. A comparison of the results obtained in

the present study, with the corresponding results of reference 6, is presented in table 3 for boron-epoxy,

glass-epoxy, and graphite-epoxy materials and for the cylinder radius-to-thickness ratio R/h = 208.311.

Moreover, a range of results is shown for reference 6 that corresponds to various simplifications that

were used in the equations that govern the response. The actual material properties that were used are

given in reference 6. In table 3, the quantity used for comparison is given by

(37)

which is the real part of the exponent p that appears in the eigenfunction solution used by Cheng and

He (n = 0 in eq. (25) of ref. 6; see also eq. (47) ofref. 13), which corresponds to the decay or attenuation

of the response. The orthotropy parameter shown in equation (37) is defined by equation (36). The

results in table 3 show very good agreement (less than 1 percent difference) for all three materials. In

addition, the results obtained herein that are shown in table 3 for the boron-epoxy material are also in

excellent agreement with the corresponding results presented by McDevitt and Simmonds (ref. 13).

Values of the orthotropy parameter 0 are presented in figure 4 and table 4 for multilayered [(-+_))m]s

laminates made from the nine material systems as a function of the fiber angle _), which is measured

from the x-axis toward the 0-axis. The results are independent of the stacking sequence number m and

show a wide variation in 0 with the material system. The results also show, for the most part, a wide
variation in 0 with the fiber angle _) and a reduction in 0 as the fiber angle increases from 0 ° to 90 °. The

largest value (2.93) and the smallest value (0.34) of 0 are exhibited by the unidirectional laminates

d equal to 5.13 and
made from P-100/3502 pitch-epoxy material and correspond to values of _ e 0.1

0.59, respectively. Moreover, the greatest variation in 0 with the fiber angle (approximately 8.7 times)

is exhibited by the laminates made from P-100/3502 pitch-epoxy material. The smallest variation is

exhibited by the laminates made from the boron-aluminum material.

Results are presented in figure 5 that show the values of the orthotropy parameter for [(_+45/02)re]s,

[(02/_+45)re]s, [(_+45/902)re]s, [(902/_+45)re]s, [(+45/0/90)m]s, and [(0/90/+45)m] s laminates made of

IM7/5260 graphite-bismaleimide material for values of the stacking sequence number m = 1 to 6.

Values of 0 range from approximately 1.53 to 0.64. These results show that the curves for the

[(t-45/02)m] s and [(02/t-45)m]s laminates approach 0 _ 1.41 as m increases to a value of 6, with the

curve for the [(02/_+45)m] s laminates converging from above and the other curve converging from

below. The higher values of 0 for the [(02/_45)m]s laminates are attributed to the higher axial bending

stiffness that is obtained by placing the 0 ° plies at the outer surfaces of the laminates, particularly for the

lower values of the stacking sequence number m. Similarly, the results in figure 5 show that the curves
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for the[(_+45/902)m]sand[(902/_+45)m]slaminatesapproach0 _ 0.76 as m increases to a value of 6,

with the curve for the [(_45/902)m] s laminates converging from above and the other curve converging

from below. Likewise, the results in figure 5 show that the curves for the [(+45/0/90)m] s and

[(0/90/_+45)m]s quasi-isotropic laminates approach 0 _ 1.03 as m increases to a value of 6, with the

curve for the [(0/90/+45)m] s laminates converging from above and the other curve converging from
below.

Overall, the results in figure 5 indicate that the [(_45/02)m] s and [(02/_45)m]s laminates exhibit

higher values of the orthotropy parameter than the [(+_45/0/90)m] s and [(0/90/+_45)m] s quasi-isotropic

laminates, which exhibit higher values of the orthotropy parameter than the [(_45/902)m] s and

[(902/_45)m]s laminates. This trend corresponds to a reduction in the value of 0 as the axial bending
and extensional stiffnesses of the laminates decrease.

Results are presented in figure 6 and table 5 that show the effect of the nine material systems con-

sidered herein on the orthotropy parameter for the [(02/+45)m] s laminates. Values of 0 range from

approximately 1.67 for P-100/3502 pitch-epoxy material to 1.09 for boron-aluminum material. Most of

the materials exhibit values of 0 in the range of approximately 1.4 to 1.6. All curves show about the

same reduction in 0 as the stacking sequence number m increases.

Results similar to those in figure 6 and table 5 are presented in figure 7 and tables 6 and 7 that

show the effect of the nine material systems on the orthotropy parameter for the [(+_45/0/90)m] s and

[(0/90/-45)m] s quasi-isotropic laminates. These results show a much smaller variation in the orthotropy

parameter with material system and stacking sequence number for the quasi-isotropic laminates than for

the [(02/_45)m]s laminates in figure 6. In particular, values of 0 for the quasi-isotropic laminates range

from approximately 1.15 to 1.0. The largest values of 0 in figure 7 are exhibited by the laminates made

of the P-100/3502 pitch-epoxy material. Moreover, the results show a larger variation in 0 with stack-

ing sequence number for the [(0/90/+_45)m] s laminates than for the [(+_45/0/90)m] s laminates.

Unbalanced, Symmetrically Laminated Cylinders

Unbalanced, symmetric laminates exhibit anisotropy in the form of extensional-shear coupling

(A16 ;e 0, A26 ;e 0) in addition to flexural anisotropy (D16 ;e 0, D26 ;e 0). For these laminates, the value of
the anisotropy parameter A, given by equations (20b) and (33), is not equal to unity. Simplified

expressions for the anisotropy parameter A 0 and the first-order correction factor C1, defined by equa-
tions (33)-(35), are given by equations (C23) and (C24), respectively. Equation (C24) indicates that the

value C 1 depends on coupling between the membrane and flexural anisotropies.

Values of the orthotropy parameter 0 for [(+(_)2m]s symmetric, unidirectional laminates for the

nine material systems considered herein are also presented in figure 4 and table 4; that is, the curves

presented in figure 4 and the data presented in table 4 for the [(-+_)m]s symmetric angle-ply laminates
are identical to those for the corresponding [(+(_)2m]s symmetric, unidirectional laminates. Thus, the

orthotropy behavioral trends for the undirectional laminates are identical to those discussed previously

for the symmetric angle-ply laminates and are also independent of the stacking sequence number m.

Results for the anisotropy parameter A 0 and the first-order correction factor C 1 are shown in fig-
ure 8 and table 8 and in figure 9, respectively, for the [(+_))2m]s symmetric, unidirectional laminates

with the nine material systems considered herein and are independent of the stacking sequence number

m. The results in figure 8 and table 8 show a substantial variation in A 0 with fiber orientation and with

material system. The results show that A 0 is the most pronounced for values of the fiber angle _)
between approximately 55 ° and 80 ° and that the contribution of the anisotropy to the attenuation

behavior is essentially insignificant (<1.05) for values of _ < 25 ° and _ > 85 °. Moreover, the largest
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variationin A 0 with fiber angle is exhibited by the laminates made of the P-100/3502 pitch-epoxy
material, and the smallest variation is exhibited by the laminates made of boron-aluminum material.

Values of A 0 range from approximately 1.42 for the maximum point on the curve for the P-100/3502
pitch-epoxy material to a value of 1.

The results shown in figure 9 for the first-order correction factor C 1 for the [(+_))2m]s symmetric,

unidirectional laminates indicate a substantial relative variation in C 1 with fiber orientation and with

material system, but all values of C 1 are less than approximately 0.45. Moreover, C 1 is less than

approximately 0.2 for all materials except the P-100/3502 pitch-epoxy material. For the upper botmd of

h 1 the contribution of C 1 to the anisotropy factorthinness of thin-shell theory, given by R - 20'

defined by equation (33) is practically negligible. Equation (C24) indicates that the insignificance of

C 1 means that the coupling of the membrane and flexural anisotropies is negligible for these laminates.

The insignificance of C 1 is illustrated and verified in figure 10 for the [(+_))2m]s symmetric, unidirec-

tional laminates made of IM7/5260 graphite-bismaleimide material (black curves) and P-100/3502

h 1
pitch-epoxy material (gray curves) for R - 20" The finely dashed curves shown in figure 10

correspond to 90-percent-decay lengths for which the anisotropy is neglected. In contrast, the solid

curves and the coarsely dashed gray curve include the effect of the membrane anisotropy and are shown

for values of bt = 0, 1.0, and 1.5. For these values, results that correspond to the Sanders-Koiter theory
3

and the Love-Kirchhoff theory are given by bt= _ and bt = 1.0, respectively. Results that correspond to

Donnell's equations are given by bt = 0. The solid curves in figure 10 for bt = 1.0 and 1.5 are based on

the exact solution that uses equation (20b) for the anisotropy factor. The corresponding curves that are

based on the approximate formula for the anisotropy parameter that is given by equation (33) are identi-

cal. The solid curves and the coarsely dashed gray curve indicate that varying bt yields a small effect,

which implies that all three shell theories yield essentially the same results and that A _A 0 for the

[(+_))2m]s symmetric, unidirectional laminates. Comparing the solid and finely dashed curves in

figure 10 also indicates that neglecting the membrane anisotropy underestimates the bending boundary-

layer decay length by as much as approximately 31 percent and 21 percent for shell walls made of

P-100/3502 pitch-epoxy and IM7/5260 graphite-bismaleimide materials, respectively.

Values of the orthotropy parameter 0 for [(+452/0/90)m]s and [(0/90/+452)m] s laminates made of

the nine material systems considered herein are also presented in figure 7 and in tables 6 and 7, respec-
tively. More specifically, the values of 0 for these laminates are identical to the values for the corre-

sponding quasi-isotropic laminates. Results for the anisotropy parameter A0, defined by equation (34),
are shown in figure 11 for [(+452/0/90)m]s and [(0/90/+452)m] s laminates made of the nine material

systems considered herein. The results in figure 11 are identical for the two laminate families, show no

significant variation in A 0 with the stacking sequence number m, and only a slight variation (less than

approximately 9 percent) with the material system. Values of A 0 range between approximately 1.1
and 1.0. Corresponding results for the first-order correction factor C1, defined by equation (35),

which are not shown herein, were obtained and indicate that all values of C 1 for the [(+452/0/90)m]s

and [(0/90/+452)m] s laminates are less than approximately 0.1. These values indicate that the contribu-

tion of C 1 to the anisotropy factor defined by equation (33) is practically negligible. Thus, A _A 0 for

these laminates. The values of A 0 shown in figure 11 suggest that neglecting the anisotropy would, at
most, underestimate the bending boundary-layer decay length by approximately 10 percent. The insig-

nificance of C 1 also means that the coupling of the membrane and flexural anisotropies are unimportant

with regard to the primary effect of the individual shell anisotropies that is captured by the parameter

A 0 .
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Balanced, Unsymmetrically Laminated Cylinders

Balanced, unsymmetric laminates may, in general, exhibit anisotropy in the form of coupling

between pure bending and twisting (D16 ¢ 0, D26 ¢ 0) and coupling between membrane and bending

action, which is manifested by nonzero values for any of the subscripted B-terms in equation (A15).

These laminates do not, however, exhibit extensional-shear coupling (A16 = A26 = 0). For the unsym-

metric laminates that are discussed subsequently, the first ply in the stacking sequence is the innermost

ply of a cylinder. Simplified expressions for the anisotropy parameter A 0 and the first-order correction

factor C1, defined by equations (33)-(35), are given by equations (C27) and (C29), respectively. Equa-

tions (C28) and (C29) indicate that the value of C 1 depends on coupling between the flexural anisot-
ropy and the anisotropy caused by unsymmetric lamination.

Results for regular, antisymmetric angle-ply laminates are shown in figures 4 and 12-16, and in

tables 4 and 9. In particular, values of the orthotropy parameter 0 for [(-----(_)m]W unsymmetric laminates

made of the nine material systems considered herein are also presented in figure 4 and table 4; that is,

the orthotropy-parameter curves presented in figure 4 and the data presented in table 4 for the [(-+_)m]s

symmetric angle-ply laminates are also identical to those for [(-----(_)m]W unsymmetric laminates. Thus, the

orthotropy behavioral trends for the [(-----(_)m]W unsymmetric laminates are identical to those discussed
previously for the corresponding symmetric angle-ply laminates and are also independent of the stack-

ing sequence number m.

Results for the anisotropy parameter A 0 defined by equation (C27) are shown in figure 12 and
table 9 for two-ply [-+_)]Wunsymmetric laminates made of the nine material systems considered herein.

The results in figure 12 show a substantial variation in A 0 with fiber orientation and with material

system and also show that A 0 is the most pronounced for values of the fiber angle _) between approxi-
mately 15 ° and 60 °. Moreover, the largest variation in A 0 with fiber angle is exhibited by the laminates
made of the P-100/3502 pitch-epoxy material, and the smallest variation is exhibited by the laminates

made of boron-aluminum material. Values of A 0 range from approximately 0.75 for the minimum
point on the curve for the P-100/3502 pitch-epoxy material to a value of 1.0. The results in figure 13

show the variation in A 0 with the fiber angle _ and the stacking sequence number m for [(-----(_)m]W

unsymmetric laminates made of the P-100/3502 pitch-epoxy material. These results show a rapid

decline in the importance of A 0 that is manifested by the curve moving closer to A 0 = 1, as the stack-

ing sequence number increases. For m = 2, 0.95 < A 0 < 1.

Results for the first-order correction factor C 1 are shown in figure 14 for two-ply [t-_)]T unsymmet-

ric laminates made of the nine material systems considered herein. The results in figure 14 also show a

substantial variation in C 1 with fiber orientation and with material system. However, the maximum

value of C 1 < 0.07 for all material systems. Results are presented in figure 15 that show the variation in

C 1 with the fiber angle _ and the stacking sequence number m for [(+_)m]T unsymmetric laminates

made of the P-100/3502 pitch-epoxy material. These results show significant reductions in C 1 with an
increase in the stacking sequence number.

Overall, the results in figures 14 and 15 indicate that the contribution of C 1 to the anisotropy factor
h 1

defined by equation (33) is negligible for the upper bound of thinness given by R - 26' which means

that A _A 0 . Thus, the results in figure 12 for the two-ply [+_]Y unsymmetric laminates indicate that

neglecting the shell anisotropy overestimates the bending boundary-layer decay length (because

A0< 1) by as much as approximately 33 and 22 percent for shell walls made of P-100/3502 pitch-

epoxy and IM7/5260 graphite-bismaleimide materials, respectively. The insignificance of C 1 is illus-

trated in figure 16 by the gray and the black curves for the laminates made of P-100/3502 pitch-epoxy
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andIM7/5260graphite-bismaleimidematerials,respectively.Thesolidblackandthegraycurvesare
1_

for the upper bound of thin-shell theory that is given by n _ _. The finely dashed curves shown in

figure 16 correspond to 90-percent-decay lengths for which the anisotropy is neglected. In contrast, the

solid curves include the effect of the shell anisotropy and are shown for values of g = 0, 1.0, and 1.5.

The solid curves for g = 1.0 and 1.5 are based on the exact solution that uses equation (20b). The corre-

sponding curves that are based on the approximate formula for the anisotropy parameter given by

equation (33) are identical. The solid curves indicate no significant effect of varying g, which implies

that all three shell theories yield essentially the same results for the [-+_)]Yunsymmetric laminates. For

[(+_)m]T unsymmetric laminates with m > 1 that are made from any of the nine material systems

considered herein, the results in figures 12 through 15 indicate that neglecting the shell-wall anisotropy

will have a small effect on the calculation of the bending boundary-layer decay length.

Values of the orthotropy parameter 0 and the anisotropy parameter A 0 for [0p/90q] T unsymmetric
cross-ply laminates are shown in figure 17 and table 10, and in figure 18 and table 11, respectively, for

the nine material systems considered herein and as a function of the percentage of 0 ° plies. For this class

of laminates, equation (20b) simplifies to equation (34); that is, A =A 0. This simplification means that
the anisotropy parameter is independent of g, which means that all three shell theories considered

herein yield identical results.

The results in figure 17 show a large variation in 0 with the percentage of 0 ° plies for most of the

material systems. In addition, the results show a large variation in 0 with the material system for the

laminates that are dominated by 90 ° plies (less than approximately 10 percent 0 ° plies) and by 0 ° plies

(more than approximately 80 percent 0 ° plies). Values of 0 vary the most for laminates made of

P-100/3502 pitch-epoxy material, with values that range from approximately 0.3 to 2.93. Most of the

materials exhibit values of 0 in the range of approximately 0.6 to 2.1.

The results in figure 18 also show a large variation in A 0 with the percentage of 0 ° plies for most
of the material systems and a large variation with material system for laminates with < 70 percent

0 ° plies. Moreover, the results show that A 0 is the most pronounced (most different from a value of 1)

for laminates with approximately 15 to 30 percent 0 ° plies. The largest variation in A 0 with the per-
centage of 0° plies is exhibited by the laminates made of the P-100/3502 pitch-epoxy material, and the

smallest variation is exhibited by the laminates made of boron-aluminum material. Values of A 0 range
from approximately 0.57 for the minimum point on the curve for the P-100/3502 pitch-epoxy material

to a value of 1. Thus, in some cases neglecting the shell-wall anisotropy overestimates the bending

boundary-layer decay length by as much as approximately 75 percent for a shell wall made of

P-100/3502 pitch-epoxy material. This result is illustrated in figure 19 by the gray curves. Similar

results are presented in figure 19 for [0p/90q] T unsymmetric cross-ply laminates made of IM7/5260
graphite-bismaleimide material (black curves). The solid black and the gray curves include the effect of

the shell anisotropy, and the finely dashed curves shown in the figure correspond to 90-percent-decay

lengths for which the anisotropy is neglected. The results in figure 19 show that including the effect of

anisotropy is particularly important for laminates with less than approximately 70 percent 0 ° plies and

more than approximately 5 percent 0 ° plies.

Unbalanced, Unsymmetrically Laminated Cylinders

Unbalanced, unsymmetric laminates may, in general, exhibit full anisotropy in the form of coupling

between pure bending and twisting (D16 _e0, D26 _e 0) and coupling between membrane and bending

action, which is manifested by nonzero values for any of the subscripted B-terms in equation (A15), and
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extensional-shearcoupling(A16;e0, A26;e0).Theexpressionsfor theanisotropyparameterA 0 and
the first-order correction factor C 1 that are given by equations (C2)-(C22) indicate that A 0 exhibits

coupling between the membrane anisotropy and the anisotropy that is caused by unsymmetric lamina-

tion, and that C 1 exhibits coupling between all three types of anisotropies. One family of laminates that

exhibits all these anisotropies is the [70p/0q] y unbalanced, unsymmetric laminates with p > 0 and q ;e 0.

Values of the orthotropy parameter 0 and the anisotropy parameter A 0 for [70p/0q] T unbalanced,
unsymmetric laminates are shown in figure 20 and table 12 and in figure 21 and table 13, respectively,

for the nine material systems considered herein and as a function of the percentage of 70 ° plies. The

results in figure 20 show a large variation in 0, with the percentage of 70 ° plies for most of the material

systems. The results also show a large variation in 0 with the material system for the laminates that

are dominated by 0 ° plies (less than approximately 20 percent 70 ° plies). Values of 0 vary the most for
laminates made of P-100/3502 pitch-epoxy material, with values that range from approximately 0.5
to 3.0.

The results in figure 21 also show a substantial variation in A 0 with the percentage of 70 ° plies for
most of the material systems and a large variation with material system for laminates with between

approximately 45 and 100 percent 70 ° plies. The largest overall variation in A 0 with the percentage of
70 ° plies is exhibited by the laminates made of the P-100/3502 pitch-epoxy material, and the smallest

variation is exhibited by the laminates made of boron-aluminum material. Values of A 0 range from
approximately 1.4 to 0.95, which correspond to the maximum and minimum points, respectively, on the

curve for the P-100/3502 pitch-epoxy material.

Results for the first-order correction factor C 1 were also obtained for [70p/0q] T unbalanced,

unsymmetric laminates made of the nine material systems considered herein but are not included in the

present paper. These results also show a substantial, relative variation in C1 with the percentage of

70 ° plies, but overall, the magnitude of C 1 is less than approximately 0.25 for the P-100/3502 pitch-

epoxy material and < 0.1 for the other materials. These results indicate that the contribution of C 1 to the

anisotropy factor defined by equation (33) is negligible for the upper bound of thin-shell theory that is

h 1
given by R - 20' which means that A _A 0. Thus, the results in figure 21 suggest that, in some

cases, neglecting the shell-wall anisotropy may overestimate the bending boundary-layer decay length

and, in other cases, may underestimate the decay length. This statement is based on the observation that,

for example, when A 0 < 1, including anisotropy reduces the value of the decay length given by

equations (18) and (19). The insignificance of C 1 also means that the contribution of the flexural anisot-

ropy to the coupling of the anisotropies is negligible. The insignificance of C 1 is clarified in figure 22

for laminates made of P-100/3502 pitch-epoxy material (gray curves) and of IM7/5260 graphite-

bismaleimide material (black curves). The solid black and the gray curves are for the upper bound of

h 1
thinness given by R - 20" The finely dashed curves shown in the figure correspond to 90-percent-

decay lengths for which the anisotropy is neglected. In contrast, the solid curves include the effect of the

shell anisotropy and are shown for values of bt = 0, 1.0, and 1.5. Moreover, the solid curves for bt = 1.0

and 1.5 are based on the exact solution that uses equation (20b). The corresponding curves that are

based on the approximate formula for the anisotropy parameter that is given by equation (33) are identi-

cal. The solid curves indicate a negligible effect of varying g, which verifies that A _A 0 and implies

that all three shell theories yield essentially the same results for the [70p/0q] y unbalanced, unsymmetric

laminates. In addition, the results show that neglecting the shell-wall anisotropy, for the most part,
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underestimatesthebendingboundary-layerdecaylengthbyasmuchasapproximately16and6percent
for shellwalls madeof P-100/3502pitch-epoxyand IM7/5260graphite-bismaleimidematerials,
respectively,andwithapproximately20-percent70° plies.In addition,theresultsin figure22showthat
neglectingthe shell-wallanisotropyunderestimatesthebendingboundary-layerdecaylengthby as
muchas approximately31 and 20 percentfor shellwalls madeof P-100/3502pitch-epoxyand
IM7/5260graphite-bismaleimidematerials,respectively,andwithapproximately100-percent70°plies.
Thereisonlyaverysmallrangeshownin figure22whereneglectingtheshell-wallanisotropyoveresti-
matesthebendingboundary-layerdecaylength,andforthisregion,theeffectisnegligible.

Concluding Remarks

An analytical study of the attenuation of bending boundary layers in both balanced and unbalanced,

symmetrically and unsymmetrically laminated-composite, thin cylindrical shells has been presented for
nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations

and contains the Love-Kirchhoff shell equations and Donnell's equations as special cases. With this

analysis, two nondimensional parameters have been identified that characterize and quantify the effects

of laminate orthotropy and laminate anisotropy on the bending boundary-layer decay length in a very

general and encompassing manner. The anisotropy parameter includes the effects of anisotropy in the

form of coupling between pure bending and twisting that appears in many symmetric laminates to some
extent, coupling between extension and shear that is present in unbalanced laminates, and coupling

between membrane and bending action that is present in unsymmetric laminates.

A substantial number of structural design technology results for the bending boundary-layer decay

length have been presented for a wide range of laminated-composite shell structures that should be use-

ful additions to the structural designer's collection of preliminary design tools. Moreover, the analysis

and results should provide additional physical insight into the fundamental behavior of general

laminated-composite shell structures and create a common basis for assessing bending boundary-layer

attenuation for the vast range of laminate constructions that are possible. Furthermore, the results

should be useful for the design of specimens for material characterization tests, for instrumenting struc-

tural verification tests, and for defining finite-element meshes. For all the laminate constructions con-

sidered in the present study, the results show that the differences between resuks that were obtained

with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations

are negligible. The results also show that the effect of anisotropy in the form of coupling between pure

bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of

the balanced, symmetrically laminated cylinders considered. Moreover, the results show that the cou-

pling of the membrane and flexural anisotropy and the anisotropy caused by unsymmetric lamination is

generally unimportant with regard to the primary effect of the individual shell anisotropies on the bend-

ing boundary-layer decay length. The only exception encountered was for unbalanced, unsymmetrically

laminated cylinders for which coupling of the membrane anisotropy and the anisotropy caused by

unsymmetric lamination is a primary effect, as expected. The results also show that in some cases

neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and
in other cases results in an overestimation.
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Table1.LaminaProperties

Lamina Materialsystems

property Boron- S-glass- Kevlar IM7/ AS4/ AS4/ Boron- IM7/
(a) A1 epoxy 49-epoxy 5260 3502 3501-6 epoxy PETI-5

El,Msi
E2,Msi
v12
G12,Msi
_1x 106/°F
_2x 106/°F

aSubscripts

33

21

0.23

7.0

3.2

11.0

7.5

1.7

0.25

0.80

3.5

11.0

11.02

0.8

0.34

0.33

-2.22

43.89

22.1

1.457

0.258

0.860

0.0125

14.91

18.5

1.64

0.30

0.87

0.25

16.2

20.01

1.30

0.30

1.03

-0.167

15.6

29.58

2.68

0.23

0.81

3.38

16.83

P-100/
3502

20.35 53.5

1.16 0.73

0.29 0.31

0.61 0.76

-0.14 -0.64

16.85 17.2

and 2 denote the longitudinal (fiber) and transverse (matrix) directions of a specially orthotropic
lamina, respectively.

Table 2. Orthotropy Parameters for Single-Ply, Homogeneous,

Specially Orthotropic Laminates

[See eq. (36)]

E2,/E 1

0.01
0.02

0.04
0.06

0.08
0.1

0.15
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1.0

Orthotropy parametm, 0

V12 = 0.2

3.16
2.66

2.24
2.02

1.88
1.78

1.61
1.50

1.36
1.26

1.20
1.14

1.10
1.07

1.04
1.01

V12 = 0.35

3.16
2.66

2.24
2.02

1.88
1.78

1.61
1.50

1.36
1.27

1.21
1.16

1.12
1.09

1.06
1.03

Table 3. Results for Specially Orthotropic Materials

Material

systems

Boron-epoxy

Glass-epoxy

Graphite -epoxy

E2/E1

(a)

0.100

0.333

0.250

v12

0.30

0.25

0.25

0

1.782

1.323

2.516

Re(p), from
reference 6

(b)

2.796-2.805

3.757-3.779

1.984-1.987

Re(p), from

present study

(b)

2.806

3.779

1.987

aSubscripts 1 and 2 denote the major and minor principal directions, respectively, of the specially orthotropic
materials defined in reference 6.

bQuantity Re(p) is defined by equation (37).
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Table 4. Orthotropy Parameters for [(-+_)m]s, [('l-_))2m]s, and [(---_))m]T Laminates

Fiber Orthotropy parameter, 0

angle, IM7/ Boron- S-glass- Kevlar AS4/ AS4/ Boron- IM7/ P-100/

(_ 5260 A1 epoxy 49-epoxy 3502 3501-6 epoxy PETI-5 3502

0

5

10

15

2O

25

3O

35

4O

45

5O

55

6O

65

7O

75

8O

85

9O

1.98

1.97

1.94

1.90

1.84

1.76

1.65

1.53

1.39

1.23

1.07

0.92

0.78

0.68

0.60

0.55

0.52

0.51

0.51

1.13

1.13

1.13

1.12

1.12

1.11

1.10

1.09

1.07

1.05

1.02

0.99

0.97

0.95

0.93

0.92

0.91

0.90

0.90

1.45

1.45

1.44

1.42

1.39

1.35

1.30

1.24

1.16

1.08

1.00

0.92

0.85

0.79

0.75

0.72

0.71

0.70

0.69

1.93

1.92

1.91

1.88

1.84

1.78

1.70

1.60

1.46

1.30

1.13

0.96

0.81

0.69

0.61

0.56

0.53

0.52

0.52

1.84

1.83

1.81

1.77

1.72

1.66

1.57

1.46

1.34

1.20

1.05

0.92

0.80

0.70

0.63

0.59

0.56

0.55

0.55

1.98

1.97

1.94

1.88

1.80

1.71

1.59

1.46

1.32

1.17

1.03

0.89

0.77

0.68

0.60

0.55

0.52

0.51

0.51

1.82

1.82

1.81

1.79

1.76

1.72

1.67

1.59

1.48

1.33

1.15

0.97

0.81

0.70

0.62

0.58

0.56

0.55

0.55

2.05

2.04

2.02

1.98

1.92

1.84

1.74

1.61

1.46

1.29

1.12

0.94

0.79

0.67

0.59

0.53

0.50

0.49

0.49

2.93

2.90

2.84

2.73

2.58

2.40

2.19

1.97

1.74

1.50

1.26

1.04

0.83

0.65

0.51

0.42

0.37

0.35

0.34

Table 5. Orthotropy Parameters for [(0 2/-+45)m] s Laminates

Number of Orthotropy parameter, 0

laminate IM7/ Boron- S-glass- Kevlar AS4/ AS4/ Boron- IM7/ P-100/

plies, 8m 5260 A1 epoxy 49-epoxy 3502 3501-6 epoxy PETI-5 3502

8

16

24

32

4O

48

56

64

1.53

1.48

1.46

1.45

1.44

1.43

1.43

1.43

1.12

1.10

1.10

1.09

1.09

1.09

1.09

1.09

1.32

1.28

1.27

1.26

1.26

1.25

1.25

1.25

1.54

1.48

1.46

1.45

1.44

1.44

1.44

1.43

1.49

1.44

1.42

1.41

1.40

1.40

1.40

1.40

1.52

1.46

1.44

1.43

1.42

1.42

1.42

1.41

1.52

1.46

1.44

1.43

1.43

1.42

1.42

1.42

1.56

1.50

1.48

1.47

1.46

1.46

1.45

1.45

1.67

1.60

1.58

1.56

1.56

1.55

1.55

1.54
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Table6. OrthotropyParametersfor[(_+45/0/90)m]sand[(+452/0/90)m]sLaminates

Numberof Orthotropyparameter,0

laminate IM7/ Boron- S-glass- Kevlar AS4/ AS4/ Boron- IM7/ P-100/

plies, 8m 5260 A1 epoxy 49-epoxy 3502 3501-6 epoxy PETI-5 3502

8

16

24

32

4O

48

56

64

1.00

1.02

1.02

1.02

1.02

1.02

1.02

1.02

1.01

1.02

1.02

1.02

1.02

1.02

1.02

1.02

1.01

1.02

1.02

1.02

1.02

1.02

1.02

1.02

1.00

1.02

1.03

1.03

1.03

1.03

1.03

1.03

1.00

1.02

1.02

1.02

1.02

1.02

1.02

1.02

1.00

1.02

1.02

1.02

1.02

1.02

1.02

1.02

1.00

1.02

1.02

1.03

1.03

1.03

1.03

1.03

1.00

1.02

1.02

1.02

1.03

1.03

1.03

1.03

1.00

1.02

1.03

1.03

1.03

1.03

1.03

1.03

Table 7. Orthotropy Parameters for [(0/90/_+45)m] s and [(0/90/+452)m] s Laminates

Number of Orthotropy parameter, 0

laminate IM7/ Boron- S-glass- Kevlar AS4/ AS4/ Boron- IM7/ P-100/

plies, 8m 5260 A1 epoxy 49-epoxy 3502 3501-6 epoxy PETI-5 3502

8

16

24

32

4O

48

56

64

1.13

1.08

1.06

1.05

1.04

1.04

1.04

1.04

1.05

1.04

1.03

1.03

1.03

1.03

1.02

1.02

1.09

1.06

1.04

1.04

1.03

1.03

1.03

1.03

1.14

1.08

1.06

1.06

1.05

1.05

1.04

1.04

1.13

1.07

1.06

1.05

1.04

1.04

1.04

1.04

1.13

1.07

1.06

1.05

1.04

1.04

1.04

1.03

1.14

1.08

1.06

1.05

1.05

1.05

1.04

1.04

1.14

1.08

1.06

1.05

1.05

1.04

1.04

1.04

1.15

1.09

1.07

1.06

1.05

1.05

1.04

1.04

24



Table8.AnisotropyParametersfor[(+(_)2m]s Laminates

Fiber Anisotropy parameter, A o

angle, IM7/ Boron- S-glass- Kevlar AS4/ AS4/ Boron- IM7/ P-100/

5260 A1 epoxy 49-epoxy 3502 3501-6 epoxy PETI-5 3502

0

5

10

15

2O

25

3O

35

4O

45

5O

55

6O

65

7O

75

8O

85

9O

1.00

1.00

1.00

1.00

1.00

1.01

1.02

1.03

1.06

1.09

1.13

1.18

1.22

1.25

1.24

1.20

1.12

1.04

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.01

1.01

1.02

1.02

1.02

1.01

1.01

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.01

1.02

1.04

1.06

1.08

1.09

1.09

1.08

1.06

1.03

1.01

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.01

1.03

1.06

1.12

1.18

1.25

1.29

1.29

1.24

1.15

1.05

1.00

1.00

1.00

1.00

1.00

1.00

1.01

1.01

1.02

1.04

1.07

1.11

1.16

1.20

1.22

1.21

1.16

1.10

1.03

1.00

1.00

1.00

1.00

1.01

1.02

1.03

1.04

1.06

1.08

1.11

1.14

1.17

1.20

1.21

1.19

1.15

1.09

1.03

1.00

1.00

1.00

1.00

1.01

1.01

1.00

1.00

1.00

1.01

1.05

1.11

1.19

1.27

1.32

1.32

1.27

1.17

1.05

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.01

1.03

1.05

1.09

1.13

1.19

1.25

1.29

1.29

1.24

1.15

1.05

1.00

1.00

1.00

1.01

1.02

1.03

1.05

1.08

1.11

1.14

1.18

1.23

1.28

1.33

1.39

1.42

1.39

1.28

1.10

1.00
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Table9.AnisotropyParametersfor['1-(_] T Laminates

Fiber Anisotropy parameter, A o

angle, IM7/ Boron- S-glass- Kevlar AS4/ AS4/ Boron- IM7/ P-100/

(_ 5260 A1 epoxy 49-epoxy 3502 3501-6 epoxy PETI-5 3502

0

5

10

15

2O

25

3O

35

4O

45

5O

55

6O

65

7O

75

8O

85

9O

1.00

0.97

0.92

0.88

0.85

0.83

0.82

0.82

0.83

0.84

0.86

0.88

0.91

0.94

0.97

0.99

1.00

1.00

1.00

1.00

1.00

1.00

0.99

0.99

0.99

0.99

0.99

0.99

0.99

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.99

0.98

0.96

0.94

0.93

0.92

0.92

0.93

0.94

0.95

0.96

0.98

0.99

0.99

1.00

1.00

1.00

1.00

1.00

0.97

0.91

0.86

0.83

0.82

0.81

0.82

0.82

0.84

0.86

0.89

0.92

0.95

0.97

0.99

1.00

1.00

1.00

1.00

0.98

0.94

0.90

0.87

0.85

0.84

0.84

0.85

0.86

0.88

0.90

0.93

0.96

0.98

0.99

1.00

1.00

1.00

1.00

0.98

0.94

0.90

0.87

0.85

0.84

0.84

0.84

0.85

0.86

0.88

0.91

0.93

0.96

0.98

0.99

1.00

1.00

1.00

0.96

0.90

0.86

0.83

0.82

0.82

0.82

0.83

0.85

0.87

0.90

0.94

0.97

0.99

1.00

1.00

1.00

1.00

1.00

0.97

0.90

0.86

0.83

0.81

0.81

0.81

0.81

0.82

0.84

0.87

0.90

0.93

0.97

0.99

1.00

1.00

1.00

1.00

0.93

0.85

0.80

0.77

0.76

0.75

0.75

0.75

0.76

0.77

0.78

0.80

0.84

0.89

0.94

0.98

1.00

1.00
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Table10.OrthotropyParametersfor[0p/90q]TLaminates

x 100%
p+q IM7/

5260
0 0.51
5 0.67

10 0.76
15 0.81
20 0.85
25 0.89
30 0.92
35 0.94
40 0.96
45 0.98
50 1.00
55 1.02
60 1.05
65 1.09
70 1.13
75 1.19
80 1.26
85 1.35
90 1.48
95 1.67

100 1.98

Boron-
A1

0.90
0.92
0.94
0.95
0.97
0.98
0.98
0.99
1.00
1.00
1.01
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.09
1.11
1.13

Orthotropyparameter,0

S-glass- Kevlar AS4/ AS4/ Boron- IM7/
epoxy 49-epoxy 3502 3501-6 epoxy PETI-5
0.69
0.77
0.82
0.86
0.89
0.92
0.94
0.96
0.97
0.99
1.00
1.02
1.04
1.06
1.09
1.12
1.17
1.22
1.28
1.36
1.45

0.52
0.68
0.76
0.81
0.86
0.89
0.92
0.94
0.96
0.98
1.00
1.02
1.05
1.08
1.13
1.18
1.25
1.35
1.47
1.65
1.93

0.55
0.69
0.77
0.82
0.86
0.89
0.92
0.94
0.96
0.98
1.00
1.02
1.05
1.08
1.12
1.17
1.24
1.33
1.44
1.60
1.84

0.51
0.67
0.76
0.81
0.85
0.89
0.91
0.94
0.96
0.98
1.00
1.02
1.05
1.09
1.13
1.19
1.26
1.36
1.49
1.67
1.98

0.55
0.69
0.77
0.82
0.86
0.89
0.92
0.94
0.96
0.98
1.00
1.02
1.05
1.08
1.12
1.17
1.24
1.33
1.44
1.59
1.82

0.49
0.66
0.75
0.81
0.85
0.89
0.91
0.94
0.96
0.98
1.00
1.02
1.05
1.09
1.13
1.19
1.27
1.37
1.50
1.70
2.05

P-100/
3502
0.34
0.63
0.73
0.79
0.84
0.88
0.91
0.93
0.96
0.98
1.00
1.03
1.06
1.10
1.15
1.22
1.31
1.43
1.61
1.93
2.93
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Table11.AnisotropyParametersfor[0p/90q]TLaminates

x 100%
p+q IM7/

5260
0 1.00
5 0.91

10 0.84
15 0.80
20 0.77
25 0.75
30 0.74
35 0.75
40 0.75
45 0.77
50 0.79
55 0.82
60 0.85
65 0.88
70 0.91
75 0.94
80 0.96
85 0.98
90 0.99
95 1.00

100 1.00

Boron-
A1
1.00
1.00
0.99
0.99
0.98
0.98
0.98
0.98
0.97
0.97
0.97
0.97
0.98
0.98
0.98
0.98
0.99
0.99
0.99
1.00
1.00

Anisotropyparameter,A0

S-glass- Kevlar 49- AS4/ AS4/ Boron- IM7/

epoxy epoxy 3502 3501-6 epoxy PETI-5

1.00

0.98

0.95

0.93

0.91

0.90

0.89

0.88

0.88

0.88

0.89

0.90

0.91

0.92

0.94

0.95

0.97

0.98

0.99

1.00

1.00

1.00

0.91

0.85

0.81

0.78

0.76

0.75

0.75

0.76

0.77

0.79

0.82

0.85

0.88

0.91

0.93

0.96

0.97

0.99

1.00

1.00

1.00

0.93

0.87

0.83

0.81

0.79

0.78

0.78

0.78

0.79

0.81

0.83

0.86

0.89

0.91

0.94

0.96

0.98

0.99

1.00

1.00

1.00

0.91

0.84

0.80

0.77

0.75

0.74

0.74

0.75

0.77

0.79

0.82

0.85

0.88

0.91

0.94

0.96

0.98

0.99

1.00

1.00

1.00

0.94

0.88

0.84

0.81

0.80

0.79

0.78

0.79

0.80

0.82

0.84

0.86

0.89

0.92

0.94

0.96

0.98

0.99

1.00

1.00

1.00

0.90

0.82

0.78

0.75

0.73

0.73

0.73

0.74

0.76

0.78

0.81

0.84

0.88

0.91

0.94

0.96

0.98

0.99

1.00

1.00

P-100/

3502

1.00

0.72

0.64

0.59

0.57

0.57

0.59

0.61

0.65

0.69

0.73

0.77

0.82

0.86

0.90

0.93

0.96

0.98

0.99

1.00

1.00
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Table12.OrthotropyParametersfor [70p/0q] T Laminates

x 100%
p + q IM7/

5260

0 1.98

5 1.71

10 1.54

15 1.41

20 1.32

25 1.25

30 1.19

35 1.15

40 1.11

45 1.09

50 1.06

55 1.04

60 1.02

65 1.00

70 0.98

75 0.95

80 0.92

85 0.88

90 0.82

95 0.74

100 0.60

B oron-

A1

1.13

1.11

1.09

1.08

1.07

1.05

1.05

1.04

1.03

1.03

1.03

1.02

1.02

1.01

1.01

1.00

0.99

0.98

0.97

0.95

0.93

Orthotropy parameter, 0

S-glass- Kevlar 49- AS4/ AS4/ Boron- IM7/

epoxy epoxy 3502 3501-6 epoxy PETI-5

1.45

1.37

1.30

1.24

1.20

1.16

1.13

1.10

1.08

1.06

1.05

1.03

1.02

1.00

0.99

0.97

0.94

0.91

0.88

0.83

0.75

1.93

1.69

1.52

1.41

1.31

1.24

1.19

1.15

1.11

1.09

1.06

1.04

1.02

1.00

0.98

0.95

0.92

0.88

0.83

0.75

0.61

1.84

1.63

1.49

1.38

1.30

1.23

1.18

1.14

1.11

1.08

1.06

1.04

1.02

1.00

0.98

0.95

0.92

0.88

0.83

0.76

0.63

1.98

1.71

1.54

1.41

1.32

1.25

1.19

1.15

1.11

1.09

1.06

1.04

1.02

1.00

0.98

0.95

0.92

0.88

0.82

0.74

0.60

1.82

1.63

1.49

1.38

1.30

1.23

1.18

1.14

1.11

1.08

1.06

1.04

1.02

1.00

0.98

0.96

0.92

0.89

0.83

0.76

0.62

2.05

1.75

1.56

1.43

1.33

1.25

1.20

1.15

1.12

1.09

1.06

1.04

1.02

1.00

0.98

0.95

0.92

0.88

0.82

0.74

0.59

P-100/
3502

2.93

2.02

1.70

1.52

1.39

1.29

1.22

1.17

1.13

1.10

1.07

1.05

1.02

1.00

0.97

0.95

0.91

0.86

0.80

0.71

0.51
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Table 13. Anisotropy Parameters for [70p/0q] T Laminates

x 100%
p + q IM7/

5260

0 1.00

5 1.02

10 1.04

15 1.06

20 1.07

25 1.07

30 1.07

35 1.06

40 1.05

45 1.03

50 1.02

55 1.01

60 1.01

65 1.01

70 1.02

75 1.04

80 1.07

85 1.11

90 1.16

95 1.22

100 1.24

B oron-

A1

1.00

1.01

1.01

1.02

1.02

1.02

1.03

1.03

1.03

1.04

1.04

1.04

1.04

1.04

1.04

1.04

1.04

1.04

1.03

1.03

1.02

Anisotropy parameter, A0

S-glass- Kevlar 49- AS4/ AS4/ Boron- IM7/

epoxy epoxy 3502 3501-6 epoxy PETI-5

1.00

1.01

1.02

1.02

1.03

1.03

1.03

1.03

1.03

1.03

1.03

1.03

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.10

1.08

1.00

1.02

1.05

1.07

1.09

1.10

1.10

1.10

1.09

1.09

1.08

1.08

1.08

1.09

1.11

1.13

1.16

1.20

1.25

1.31

1.29

1.00

1.02

1.04

1.05

1.06

1.06

1.06

1.05

1.04

1.04

1.03

1.02

1.02

1.03

1.04

1.06

1.09

1.12

1.16

1.20

1.21

1.00

1.02

1.04

1.05

1.05

1.05

1.04

1.03

1.01

1.00

0.98

0.97

0.96

0.96

0.97

0.98

1.00

1.04

1.09

1.15

1.19

1.00

1.02

1.05

1.07

1.09

1.10

1.11

1.11

1.12

1.12

1.12

1.13

1.14

1.15

1.18

1.20

1.24

1.28

1.32

1.36

1.32

1.00

1.03

1.05

1.08

1.09

1.10

1.09

1.09

1.08

1.06

1.05

1.04

1.04

1.04

1.05

1.07

1.10

1.15

1.20

1.27

1.29

P-100/

3502

1.00

1.07

1.13

1.17

1.19

1.20

1.20

1.18

1.16

1.12

1.08

1.05

1.01

0.98

0.96

0.96

0.97

1.01

1.08

1.21

1.42

3O



Nondimensional

90%-decay length,

d _=0.1

6
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4

3

2
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Anisotropy parameter, A = 1.6
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Figure 1. Nondimensional 90-percent-decay length for symmetrically and unsymmetrically laminated cylinders,

as a function of laminate orthotropy.
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Figure 2. Nondimensional 90-percent-decay length for symmetrically and unsymmetrically laminated cylinders,

as a function of laminate anisotropy.
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Orthotropy parameter,

4
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2

1

0
0

.........i]]][]]]]]][]]ii[]]] ]]][]]]i]]][]]ii[]]][]]][]]]]]][]]ii[]]]i

_ .................................................._ Boron aluminum .........
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Modulus ratio, E2
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Figure 3. Effect of lamina material properties on nondimensional orthotropy parameter for single-ply, homoge-

neous, specially orthotropic laminates (0.2 < vl2 < 0.35).
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Figure 4. Effect of lamina material properties on nondimensional orthotropy parameter for [(+(b)m]s, [(+(b)em]s,and
[(+_b)m]Wlaminates (m = 1, 2.... ).
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Orthotropy parameter,
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Figure 5. Nondimensional orthotropy parameter for typical laminates made of IM7/5260 material.
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Figure 6. Effect of lamina material properties on nondimensional orthotropy parameter for [(0e/+45)m] s laminates.
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P-100/3502 IM7/PETI-5, Kevlar 49-epoxy,
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Figure 7. Effect of lamina material properties on nondimensional orthotropy parameter for quasi-isotropic
laminates and similar unbalanced laminates.
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Figure 8. Effect of lamina material properties on nondimensional anisotropy parameter for [(-I-(_)2m]s laminates
(m= 1, 2 .... ).
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Figure 9. Effect of lamina material properties on nondimensional first-order correction factor for [(-I-(_)2m]s

laminates (m = 1, 2 .... ).
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Figure 10. Nondimensional 90-percent-decay length for [(-I-(_)2m]s laminates made of IM7/5260 graphite-

bismaleimide and P-100/3502 pitch-epoxy material = 2-0; m = 1, 2 .....
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Figure 11. Effect of lamina material properties on nondimensional anisotropy parameter for [(0/90/+452)m] s and
[(+452/0/90)m] s laminates.
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Figure 12. Effect of lamina material properties on nondimensional anisotropy parameter for [+(_]T laminates.

36



Anisotropy
parameter,

,'_'0

1.2

1,0

,8

,6

,4

.2

0
0

............................................................................................................................... i....................... i ............................................................

.. ................................_._.

! . fiberf

....................................................................................................................................................................................................................

i i I i i I i i I i i I i i I i i I

15 30 45 60 75 90
Fiber angle (_,deg

Figure 13. Effect of stacking sequence number on nondimensional anisotropy parameter for [(+(_)m]T laminates
made of P- 100/3502 pitch-epoxy material.
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Figure 14. Effect of lamina material properties on nondimensional first-order correction factor for [q-(_]T laminates.
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Figure 15. Effect of stacking sequence number on nondimensional first-order correction factor for [(--+(_)m]T

laminates made of P-100/3502 pitch-epoxy material.
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Figure 16. Nondimensional 90-percent-decay length for [q-(_]T laminates made of IM7/5260 graphite-bismaleimide
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Appendix A

Sanders-Koiter Equations

The linear Sanders-Koiter shell equations (refs. 16 and 17) are presented in this appendix for a

right-circular cylinder with a radius that is given by R. For these equations, x and 0 denote the axial

and circumferential coordinates, respectively. First, the equilibrium equations are presented; then the

kinematic equations and the constitutive equations are presented. Last, the boundary conditions are
given for a complete right-circular cylinder at an edge that is given by a constant value of the axial
coordinate x.

Equilibrium Equations

The equilibrium equations are given in a form similar to those found in reference 22; that is,

DNx 1 DNx0 C2 DMx0
+ +qx =0 (A1)

Dx R D0 2R 2 D0

1 DN0 Cl c2 DMx0

+R D0 +RQ0+2R Dx +q0=0 (A2)

DQx 1 DQo NO

Dx 4 R D0 R +qn =0 (A3)

DMx 1 DMx0
+ Qx = 0 (A4)

Dx R DO

DMxo 1 DMo
-t Qo = 0 (A5)

Dx R DO

where Nx, NO, and Nxo are the membrane stress resultants; Qx and Qo are the transverse shear-

stress resultants; Mx, M0, and Mx0 are the bending stress resultants; qx, q0, and qn are the applied
surface tractions; and c 1 and c2 are constants that identify the equations of other shell theories that

are considered herein. In particular, the Sanders-Koiter equations are given by c 1 =c 2 = 1, and the

Love-Kirchhoff equations are given by c 1 = 1 and c2 = 0. Donnell' s equations are given by c 1 = C2 = 0.
This convention is used throughout the present study.

Kinematic Equations

The kinematic equations are given by

o Du
ex = Dx (A6)
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o 1 3v w (A7)_O=ROO+n

0v 1 0u (A8)_xo=Ox+ n O0

_w

[3°- 3x (A9)

Cl 1 3w
[3_ = v - (A10)

R R OO

o cqov _Ou)[3n= 21,0x R00 (All)

(A12)

1 013__ c 1 0v 1 02W

K_-R 30 R 230 R 2 302
(A13)

ou
+ 0x - R0x00+R/Cl+2C2) 0x 2R 200 (A14)

where u, v, and w are the axial, circumferential, and radial displacements of a point of the shell middle
o o Kosurface; 8x, 8_, and _x0 are the membrane strains; _o, _, and _o are the rotations; and Kx, 0, and

O

Kx0 are the bending strains. The displacement w is positive when it is outward from the cylinder
reference surface.

Constitutive Equations

The isothermal constitutive equations are given in matrix form by

Nx All A12 A16 iB11 B12 B16

No A12 A22 A26 iB12 B22 B26

Nxo A16 A26 A66 iB16 B26 B66

Mx = B11 B12 B16iDll D12 D16

Mo B12 B22 B26 D12 D22 D26

Mxo B16 B26 B66 iD16 D26 D66

/

_o[

 ,°oj

(A15)
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where the subscripted A, B, and D terms of the matrix are the stiffnesses of laminated-composite

shells that are obtained from the Love-Kirchhoff shell theory. Moreover, the constitutive terms in equa-

tion (A15) are identical to those for laminated-composite plates that are given in reference 18, page 198.

Boundary Conditions

The boundary conditions for an edge that is defined by a constant value of the axial coordinate x

are given by

N x = _Tx(0) or u = fi(0) (A 16)

Nx0+ i++x0: or v =_(0) (A17)

1 3Mx0-V(0) or w=w(0) (A18)
QX+R _0

Mx = 1VIx(0) or [3° = _(0) (A19)

where fi(0), v(0), and w(0) are applied edge displacements; _(0) is an applied edge rotation; and l_Ix(0),

T(0), V(0), and lVlx(0) are applied edge loads.
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Appendix B

Equations for Axisymmetry

The linear Sanders-Koiter shell equations that are presented in appendix A for a right-circular cylin-

der with a radius R are specialized in this appendix for the case of axisymmetric behavior. For these

equations, x and 0 denote the axial and circumferential coordinates, respectively. The specialization to

axial symmetry is conducted by eliminating all terms in the equations of appendix A that are differenti-

ated with respect to the circumferential coordinate 0. First, the equilibrium equations, the kinematic

equations, and the constitutive equations are presented. Then, the boundary conditions are given for a

complete right-circular cylinder at an edge that is given by a constant value of the axial coordinate x.

Last, the axisymmetric equations are manipulated into a single ordinary differential equation in terms of

the radial displacement w(x).

Equilibrium Equations

The equilibrium equations for axisymmetric behavior are given by

dN x

dx + qx(X) = 0 (B 1)

dNx0 C 1 C 2 dMx0
+ Q0 + + q0(x) = 0 (B2)

dx R 2R dx

dQx NO

dx R + qn(X) =0 (B3)

dM x

dx Qx = 0 (B4)

dMx0

dx - Q0 =0 (B5)

where the membrane stress resultants Nx, NO, and Nx0; the transverse shear-stress resultants Qx and

Q0 ; the bending stress resultants Mx, M0, and Mx0; and the applied surface tractions qx, q0, and qn
are functions of only the axial coordinate x.

Kinematic Equations

The kinematic equations are given by

eo =du (B6)
x dx
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o W

e 0 =R (B7)

dv

_x0 =dx (B8)

dw

13° - (B9)
dx

[3_= cl v (B10)
R

[3o_ c2 dv (Bll)
2 dx

d[3° d2w
o _ _ (B12)

Kx dx dx 2

K_ =0 (B13)

1 d[3_ ( 1 c /dvo _lc+ _
Kx0 = R [3° 4 dx R 1 2}d x

(B14)

o
where the middle-surface displacements u, v, and w; the membrane strains ex, e_, and _x0; the

o o

rotations [30, [3_, and [30; and the bending strains _Cx, _c_, and _Cx0 are functions of only the axial
coordinate x.

Constitutive Equations

The isothermal constitutive equations reduce to

Nx All A12 A16iB11 B12 B16

NO A12 A22 A26iB12 B22 B26

Nxo A16 A26 A66iB16 B26 B66

Mx = B11 B12 B16Dll D12 D16

M0 B12 B22 B26D12 D22 D26

_Mx0 B16 B26 B66iD16 D26 D66

/
< |

°[

0)_°0

(B15)
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where the subscripted A, B, and D terms of the matrix are the usual constitutive terms of classical

Love-Kirchhoff-type laminated composite shell theory or classical laminated plate theory (e.g., see

p. 198 ofref. 18).

Boundary Conditions

The boundary conditions for an edge that is defined by a constant value of the axial coordinate x

are given by

Nx=Nx or u=fi (B16)

or (B17)

Qx=_ " or w=_ (B18)

Mx=I(/I x or _x°=_ (B19)

where the applied edge displacements u, v, and C_; the applied edge rotation _; and the applied edge

loads Nx, T, V, and 1VIx are all constants.

Bending Boundary-Layer Equation

The bending boundary-layer equation is obtained by first noting that integration of equation (B1)

yields

Nx = - f qx dx + C - N(x) (B20)
d

where C is a constant of integration that is determined from the boundary condition given by equa-

tion (B 16). Next, equations (B2) and (B5) are combined to get

dNx0 1(c +lc2/dMx0 (B21)dx +R 1 2 ] dx +qO(X)=O

For convenience, the parameter

1

g=C 1 -t-_ C2 (B22)

3

is introduced such that the Sanders-Koiter equations are given by bt= _ and the Love-Kirchhoff equa-
tions are given by g= 1. Donnell's equations are given by g= 0. Similarly, the function
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T(x) = Nxo + Rg Mxo (B23)

is introduced so that equation (B21) becomes

df
dx

+ qo(x) = 0 (B24)

and the corresponding boundary condition given by equation (B 17) becomes

A

T=T or v=_ (B25)

Integration of equation (B24) yields

= - f qo dx + C = T(x) (B26)

where C is a constant of integration that is determined from the boundary condition given by equa-

tion (B25). Next, equations (B3) and (B4) are combined to give

d2Mx N O

dx 2 R t-qn(X) = 0
(B27)

The next step in the analysis is the simplification of the constitutive equations. First, by using equa-

tions (B8) and (B22), equation (B 14) is expressed as

o g _x0 (B28) :xO=R

By using equations (B23) and (B28), the constitutive equations are expressed as

/ :/iall= A12 222 A26 B12 /_g_

A16 A26 A66 B16 /_x0{

Mx) B11 B12 B16 D11]/K°J

(B29)

and

O O -- O

M 0 = B lZgx + BZZE 0 + Bz6_x 0 + DlZK x (B30)
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where

- (h?l 
A16 =A16 +B_R] h

(B31)

-
A26 =A26 +g_,R] h

(B32)

- _ /h'_B66 (h) 2A66 =A66 + 2B_R)_+ g 2 D66
h 2

(B33)

(h]Dl 
B16=B16+g_R] h

(B34)

-
B26 =B26 +gI, R] h

(B35)

The motivation for writing the constitutive equations in this form is that the matrix equation given by

equation (B29) is the only part of the full constitutive equations that appears in the strain-energy density

function, which is used in the present paper to determine the corresponding positive-definiteness condi-

tions. With these simplified constitutive equations and equations (B6)-(B8) and (B12), equation (B20)

is expressed as

- dv d2w
All du +Al_W +A16 B 1 - _l(x) = 0

dx "_ R dx- 1 dx 2
(B36)

and equation (B26) is expressed as

w + 2 dv d2w
- du + 226 66 dx - _ T(x) = 0A16 dx R 16 dx 2

du dv

Equations (B36) and (B37) are then solved for dx and dx to get

_d2w

du A66N(x)-A16T(x)+(A16226-A12A66)R+(266Bll-A16B16]dx2

dx Al1266_226

(B37)

(B38)

16 ]d2w
dv Allf(x)- AI6N(x)+ (112216- AIIA26)R + (AIIB - AI6B 11] dx 2

dx = 111266_226 (B39)

49



Equation(B39)indicatesthatthecircumferentialdisplacementv(x)becomes_uncoupledfromtheaxial
displacementu(x) andtheradialdisplacementw(x) whenA16=A26=B16=0, which impliesthat
A16=A26=B16=D16=0. In addition,the constitutiveequation(B29)indicatesthat Nx, NO,and
Mx becomeuncoupledfromthetorsional,shearstrain_x0 whenA16=A26=B16=0 andthat T,

O O O

which is defined by equation (B23), becomes uncoupled from ex, e0, and_K x. Furthermore, equa-

tion(B30) indicates that M 0 becomes uncoupled from _x0 when B26=0, which implies

B 26 = D26 = 0.

Next, equations (B38) and (B39) are then substituted into equations (B6) and (B8), and the resulting
O

expressions for e x and _x0, along with equations (B7) and (B12), are substituted into the constitutive

equation (B29). This action converts the strains and stress results in equation (B29) into functions of the

radial displacement w(x). Substituting the expressions for N o and M x into equation (B27) yields the

bending boundary-layer equation that is given by

d4w d2w

C1 , 4 + +C3w=C4(x)dx C2 dx 2
(B40)

The constant coefficients are given by

C1 = Dl1[1 -

A66B21 -t-A11B26 - 2A16B 11_ 16

AliA66- A26)Dll

(B41)

C2 =- 2[ B 12

{ 16 26AI2 66)BII+(AI2 16A11 26) 16]
+ AllA66_X26 ] (B42)

) -2 -2 - -AllA22- A122 A66 - AllA26 - A22A16 + 2A12A16A26

C3=

R2(A11A66- A26)

(B43)

The function C4(x) is given by

C4(x ) = qn(X) +
+(A1  16-ai

R(AII 66- l 6)

- - ]d2N+(AllB16 7_ ]d2_
A16B16)dx 2 -Bee 16]dx2

+ (B44)
AllA66- A26
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Theseexpressionsaresimplifedfurtherby introducingthefollowingexpressions:

A16A26- A12A66
2 - -2 -2

a12= (A 11A22-A12)A66- A11A26- A22A16+2A12A16A26
(B45)

AliA66- A26

2 - -2 -2
a22= (A 11A22-A12)A66- A11A26- A22A16+2A12A16A26

(B46)

A12A16- AliA26

a26= (al 1A22-A22)7_66- al 1A26- A22A26+2A12A16A26
(B47)

_)21=-(al2B 11+a22B12+a26B16) (B48)

e=l
_66B21 -2 - -+A11B 16 - 2A16B 11B 16

(AliA66- A26)D11

(B49)

By using equations (B45)-(B49), equations (B41)-(B43) are expressed as

C 1 =Dll e (BS0)

2 b21
C 2 -

R a22
(B51)

1
C 3 -

R2a22
(B52)

Similarly, for the case where the second derivatives of _l(x) and T(x) are zero valued, equation (B44)

becomes

a 12N(x) + a26T(x)

C4(x ) = qn(X) + R_22
(B53)

The desired form of the bending boundary-layer equation is obtained by dividing equation (B40) by C 1;

that is,
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d4w +4S d2w +4Qw =P(x)
dx 4 dx 2

(B54)

where the constants S and Q are given by

m

C2 b21

S - 4C 1 -- 2R_22D 11e (B55)

C3 1
- (B56)

Q- 4C 1 4R2_22D11 e

The function P(x) is given by

C4(x) qn(X) a12_l(x)+a26T(x)
p(x) - - +

C1 Dll e Ra22Dll e
(B57)

for the special case when the second derivatives of _T(x) and T(x) are zero valued. The quantity Dll e

that appears in equations (B54)-(B56) is sometimes referred to, in some contexts, as a reduced bending

stiffness (ref. 12).
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Appendix C

Anisotropy-Factor Equations

The first-order approximation of the anisotropy factor A that is used herein is given by

(c1)

where A 0 is the value of equation (20b), with g = 0 in the terms with the overbars. This expression is

given by

AliA22- A22 ) 1/4(AO=, All a22eo 1 b21 ) 1/2
_//a22D 11 _0

(C2)

which is the anisotropy factor that corresponds to Donnell's equations. The terms a22 , b21 , and e 0 are
given by

A 16A26 - A 12A66

a12 : (A11122- A22)A66- A11126- A22126 + 2112116126

(C3)

AliA66 - A26

a22 : (A11122- A22)A66- A11126- A22126 + 2112116126

(C4)

A 12A 16 - AliA26

a26=( 2) 2 2A A A A A A A A11 22- 12 66- 11 26- 22 16+2A12A16A26

(C5)

b21 =- (a 12B 11 + a22B 12 + a26B 16) (C6)

A66B21 + A11B26 - 2A16B 11B 16

eo=l- (AliA66_ A26)DI 1 (C7)
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Theterm C1 is a first-ordercorrectionto theresultsthatcorrespondto Donnell'sequationsandis
givenby

4a::Oll_0(a::,+al::_0)+2a+l:l_0-b:l,)-eal::b:l_0
C1 = (C8)

4a22_0 (_/a22D11¢0-b21)

where

2 A16Bll-AllB16 [O16/AllA66-AI 6/-B16 BllA66+AllB66 +A16/All'+BI 6/I
2 2

¢1 (A11A66_A16} D11h

(C9)

B 16f16 + B 26f26 + B 66f66

all2 = 2 (el0)

A A A A A A A A +2A A A11 22 12 66 11 26 22 16 12 16 26 h

B 16g 16 + B 26g26 + B 66g66
a122 = -2 (Cll)

I(111122 A22)A66 111126 A22A26+2112A1612612h

B 16h16 + B 26h26 +B 66h66
a126 = (C12)

I( ) 2 2AllA22 A22 A66 AllA26 A22A16+2A12A16A2(

2

h

a26D16b121= - a112B 11+ a122B 12 + a126B 16 + h (c13)

and

f16 = A26(A26A22 - AliA26)+ A66[A26{AllA22 + A22) - 2A12A22A16 (C14)
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 6=A16(A 6AllA22Al 6)+1661116{111122+Al 2/2AllA12126 C15,

g26=(112116111126)(111166Al_6) _c18,

g66=(A12A16111126)2 _c19,

h16=A12166(Al_66Al_2)+AllA26(A12126A16122)+A16122(A12A16AliA26)_C20,

h66=2(111126112116)(111122Al_2) _C22,
Special Cases for ,4 0 and C1

Simplifications to A o and C1 are presented below for unbalanced and balanced, symmetric lami-

nates and for balanced, unsymmetric laminates that include the subclasses of general antisymmetric

laminates, antisymmetric cross-ply laminates, and antisymmetric angle-ply laminates.

Unbalanced and balanced symmetric laminates

For unbalanced, symmetric laminates, A16_0, A26_0, and B11=B12=B22=B16=B26 =

B 66 = 0. For this special case,

f !11112 2 112)(11116 6 1"16 ) 1/4

2 2 2 (C23)
A°=\111[(1 111 22 112)166 1 111 26 1 122 16 +2112116126
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which agrees with the corresponding equations given by Reuter (ref. 4), and

D16(A12A 16 - A 11A26)
C 1 = (C24)

[( 2) 22h AliA22 A12 A66 AliA26 A22A26+2A12A16A26 I IDII(AIIA66Al 6)l
For balanced, symmetric laminates, A16 = A26 = 0 in addition to the subscripted B-matrix constitutive

terms. For this special case, A 0 = 1 and C1 = 0.

Balanced, unsymmetric laminates

For balanced, unsymmetric laminates, A16=A26=0, which yields the following simplified

expressions:

B21 B26

e 0=1 A11D11 A66D11
(c25)

AllB 12- A12B 11
A = (C26)

v/A 1D11(A11A22- e0A122)

.o=ifi;-o{,+a/1_ (C27)

B16(D16 B11B16

e 1 = -2 A66h/D11 A11D11

B 16B 66

A66D11
(c28)

1
/7

C51 4(1 +A)
i

2B16(A11B26-AI2B16)
-- (1 + 2A) +

e0 A66hv/A11D11(A11A22 _ A22)e0

(C29)

For the subclass of balanced, antisymmetric laminates, D16=D26=0, in addition to the shear-

extensional coupling terms, which yields the following simplification:

_1-- 2816 [g 11 t- B66/

a66Dllh_all A66J

(c3o)
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thatis appliedto equation(C29).For thesubclassof (balanced)antisymmetriccross-plylaminates,
B12=B16=B26=B66=0,B22=-Bll, andD16=D26=0 in additionto theshear-extensionalcou-
plingterms.Forthisspecialcase,C1 = 0 and

A12B11

AO_ 4 1 --/A11D11(A11A22_ A_2)e 0
(c31)

where

B21

e 0 = 1 A11D11
(c32)

For the subclass of balanced, antisymmetric angle-ply laminates, B 11 = B 12 = B 22 = B 66 = 0 and
/-----.

=0 in addition to the shear-extensional coupling terms. For this special case, A 0 = _/e 0D16 =D26
Y

where

B1 6
e 0 = 1 A66D11

(C33)

which agrees with the corresponding equations given by Reuter (ref. 4), and

B 16(A11B 26- A12B 16)

2A66h A11D11 A11A22-A22 e 0

Further simplifications can be made to equations (C31) and (C32) for [0/90/.../90] antisymmetric-

cross-ply-laminate shell walls with an even number of layers that have identical material properties. For

these laminates, the plies are specially orthotropic, and their principal material directions are oriented at

0 ° and 90 ° to the cylinder axes in an alternating manner. In particular, the major principal axes of the

odd-numbered and even-numbered plies are aligned with the x- and 0-axis, respectively, with the first

ply in the stacking sequence located at the inner surface of the cylinder. Moreover, all odd-numbered

plies have the same thickness, and all even-numbered plies have the same thickness, but these

two thicknesses are, in general, different. The laminate stiffnesses are given in reference 18 (see

pp. 224-226) in terms of the number of layers N, the thickness ratio M, the ratio of the principal elastic

moduli F =tz2 (for which 0 < F < 1), and the reduced, plane-stress lamina stiffnesses. The thickness
E1

ratio is defined by

_1 N

t(1) (C35)
M= Z t(k)+ Z t(k)=t(2)

k 1,3 .... k_,4 ....
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wheret(k) denotesthethicknessof thekthplyand

1%1 N
N

h= Z t(k)+ Z t(k)=_(t(l)+t(2))
k 1,3.... k_,4....

(C36)

isthetotallaminatethickness.Fortheantisymmetriccross-plylaminates,t(1) andt(2) arethethicknesses
of the0° and90° layers,respectively.Substitutingthenonzerolaminatestiffnessexpressionsfor this
classof antisymmetriccross-plylaminatesthataregivenin reference18 intoequations(21),(C31),
and(C32)yields

[1--(1--F)Q](M+ 1)(M+ F) \1/4

0 =i (M +F)(1 +MF)-[(1 +M)Fv 1212f
(C37)

X/12MF(1 F)v12 / 1/2

N_/[1 (1 F)Q](M+I)(M+F){(M+F)(1 +MF) [(M+I)FVl2]2}eo J (c38)

12M2(1 - F) 2
(C39)

e0=l N2(M + 1)3(M + F)[1 _ (1 _ F)Q]

where

1 8M(M- 1)
Q = + (C40)

I+M N2(M+1)3

and v12 is the major Poisson's ratio. For the special, but practical, case of regular antisymmetric cross-

ply lamination, all plies have the same thickness and equations (C37)-(C39) reduce to

0_

1 -( 2Fv12_I+F
(C41)

/ /4 k/12 V12 F(1 -F)

,40= 1 +N(1 +F)_/[(1 +F)2- (2Fv12)2]e0

(C42)

(C43)
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Appendix D

Example

Numerical calculations of the nondimensional orthotropy and anisotropy parameters and the bend-

ing boundary-layer decay length are presented in this appendix for a [(_+45)2/304/(0/90)2]T unbalanced,

unsymmetrically laminated cylinder with a radius R = 4 in. For this laminate, the _+45° plies and the 0 °

and 90 ° plies are made of the Kevlar 49-epoxy material given in table 1. The other plies are made of the

AS4/3502 graphite-epoxy material given in table 1. All ply thicknesses are 0.005 in., and the total wall

thickness is given by h = 0.06 in.

The laminate stiffnesses were calculated from the formulas given on page 198 of reference 18 and

are given in matrix form by

IA111221121661261161141678=
l Symmetric Symmetric

1.3051 1.0787

2.4682 0.3932

1.4022

× 105 lb/in.

IB11B22BI2B26BI61I°7475
l Symmetric B 66 Symmetric

-1.0051 _).1288

1.2628 _).1288

-1.0051 × 10 3 lb

IDle"D12D66'1I78844=
l Symmetric Symmetric

2.8842 0.8749

9.3791 0.6464

3.0057

× 101 in-lb

The numerical value of the nondimensional orthotropy parameter 0 is obtained by substituting the

appropriate laminates stiffnesses into equation (20a), which gives 0 = 1.0628. To calculate the nondi-

mensional anisotropy parameter A0, the inverse of the matrix with the subscripted A-terms is needed.

This inverse matrix is given by

all

Symmetric

a12 a16

a22 a26

a66
3.4344 -1.4604 -2.2325

= 4.8619 _).2400

Symmetric 8.9163

× 10 6 irglb

The expressions for a12 , a22 , and a26 are given by equations (C3)-(C5), respectively. Substituting the

numerical values for Bll, B12 , B16 , a12 , a22 , and a26 into equation (C6) gives b21 = 0.0059 in. Similarly,

substituting the laminate stiffnesses into equation (C7) gives e0 = 0.9713. Next, the values for the lami-

nate stiffnesses, a22 , e0, and b21 are substituted into equation (C2) to get A0 = 1.1940.
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Thenumericalvaluefor thefirst-ordercorrectionfactorC1 is obtained by first substituting the

appropriate laminate stiffnesses into equation (C9) to get el = 0.0075. Next, the appropriate laminate

stiffnesses are substituted into equations (C14)-(C22); then, the resulting values are substituted

into equations (C10)-(C12) to get all 2 = 6.2541 x 10 -10 in/lb, a122 = -1.5760 x 10 -9 in/lb, and

a126 =-5.2861 x 10 -9 in/lb. Substituting these and the other required values into equation (C13) gives
b121 = 3.2255 x 10-5 in. Similarly, equation (C8) gives C1 = 0.0022.

The first-order approximation of the anisotropy factor A is obtained bysubstituting the numerical

h h = 0.015. Substituting thevalues for bt, R, .40, and C1 into equation (C1). For the present example, R

numerical values for the last three of these quantities and bt = 1.5, which corresponds to the use of the

Sanders-Koiter equations, into equation (C1) gives A = A 0 = 1.1940. To compute the exact value
h

of anisotropy factor A that is given by equation (20b), the laminate stiffnesses, bt, and R are

substituted in equations (B31)-(B34) to obtain 7_16 = 1.0782 x 105 lb/in., A26 = 0.3927 x 105 lb/in.,

A66 = 1.3947 x 105 lb/in., and B16 = -1.2555 x 102 lb. Next, the value for e is computed by

substituting these results and the appropriate laminate stiffness values into equation (B49); this action

gives e = 0.9714. Then, the quantities defined by equations (B45)-(B48) are calculated to get a12 =

-1.4604 x 10.6 in/lb, _22 = 4.8619 x 10.6 in/lb, _26 = -0.2401 x 10.6 in/lb, and 1321 = 0.0059 in.

Finally, substituting the appropriate numerical values into equation (20b) gives the exact value of

anisotropy factor A = -4o = 1.1940, which is identical with the first-order approximation for A.

The nondimensional bending boundary-layer decay length, with anisotropy neglected, is obtained

by specifying a value for the tolerance parameter e and then substituting that value and the numerical

value for the nondimensional orthotropy parameter 0 into equation (19). For e = 0.1, this step gives

d ° d °

_/Rh - 1.8595. This value corresponds to R = 0.2277, which indicates that the bending action attenu-

ates at a distance of approximately 23 percent of the cylinder radius. The nondimensional bending

boundary-layer decay length, with anisotropy included, is obtained by substituting the numerical values

d ° d d =0.2719,
for _ and A into equation (18). This step gives x/_ 2.2202, which corresponds to R

which indicates that the bending action attenuates at a distance of approximately 27 percent of the cylin-

der radius. Overall, these results indicate a very small effect of the laminate anisotropy.
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